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Abstract. Thorny graphs are graphs having only branched and terminal vertices.
Their properties have not been previously studied in detail, though it may be noted
that they appear in a couple chemically interesting contexts. First, they may be viewed
as non-H-deleted graphs of hydrocarbons, with the C and H atoms not distinguished.
Second, they may be viewed as the H-deleted graphs exhibiting extremal
characteristics for certain graph invariants, and thence also for certain chemical
properties corresponding to such graph invariant. This paper considers a special case,
namely trees having all non-terminal vertices of a fixed degree d, and termed d-thom
acyclic graphs. An algorithm and a program are developed for the evaluation of the
average Wiener number of isomeric d-thorn trees having up to a hundred atoms, for ¢
=3andd=4.

INTRODUCTION

The Wiener number (and many other graph invariants) have developed as useful
“topological indices” for molecular structures, with Professor Alexandru T. Balaban (Sandy)
being a leading advocate for such approaches. See, e.g., [1] or [2]. As such, special methods to
compute Wiener numbers, or theorems they satisfy, or analogues, or extensions all have become

of interest.

# Dedicated on the occasion of the 70° birthday to Professor Alexandru T. Balaban, who has long pursued the use of
topological indices as QSAR and QSPR descriptors
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In 1997-1998, Ivan Gutman [3,4] discussed the graph theoretical representation of some
special classes of organic compounds. He introduced the term “thorn graph™ for the graph G*
obtained from a parent connected graph G by attaching p; new vertices of degree one (p;,0) to all
of its vertices i. Special attention has been paid to some classes of thorny graphs having a
chemical relevance. These classes are determined by the condition p; = dpa. - di, where dp.. is a
constant, and d; is the degree of the i vertex in G, G being a tree. For organic acyclic molecules,

dmar =4 or 3 for the respective classes of alkanes 1 and “polyeneoids” 2.
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The classes of alkanes and polyeneoid compounds have only two types of vertices:
nonterminal vertices of degree d and terminal vertices of degree 1. Such graphs have been known
in graph theory as proper graphs [5]. Therefore, proper graphs are a special case of thorny graphs
with a uniform degree d of all nonterminal vertices. We will call such graphs d-thorn graphs.

The d-thorn graphs are of importance for polymer theory [6,7], especially for dendrimers
[8,9]. where they are termed Cayley trees [10]. The Wiener number of such classes of polymer
graphs could be of use in the quantitative characterization of polymer topology, as well as for
specific structure-property relationships. Formulae for the Wiener number of individual
dendrimer species (such as with “uniform radius™) have been reported by Gutman [11] and
Diudea [12]. However, the number of isomeric structures without restrictions increases rapidly
with the number of atoms. One is thus confronted with the problem of isomer enumeration such

as has been a topic of permanent interest since 19" century when it stimulated the genesis of
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graph theory. Some of this history and much of the related mathematical work, especially
following Polya’s fundamental enumeration theory of the 1930s, is described by Kerber [13].

As a consequence of the extreme variety of molecular architectures, ensembles of
molecules are better characterized by averages or distributions. Bytautas and Klein [14]
calculated recently the mean values of several properties of alkane isomers having up to 40
carbon atoms. They also extended from 20 to 100 carbon atoms [15] the work of Gutman et al.
[16,17] on average Wiener numbers of isomeric alkanes CyHaw,a. In this study, we calculate the

average Wiener numbers for 3-thorn and 4-thorn trees (isomeric alkanes and polyeneoids).

METHOD

Each thorny graph T* has a parent graph T obtained by deleting all degree-1 sites from
T*. Conversely, given a parent, the corresponding d-thorn graph T* is obtained by adding new
degree-1 vertices to T, so as to bring all the vertices of T up to degree d. Gutman [3] derived a
formula that relates the Wiener number of thorny trees T* with the Wiener number of the parent

tree-graph T

W(T5)=(d —1)2W(T )+ [(d=1)N +1]> (1)

where N is the number of vertices in 7, and d is uniform degree of the nonterminal vertices in T*.
The formula includes also the case of N = I, for which the parent graph is a single vertex, W(T) =
0, and W(T*) = W(Star) = . The d-thorn graph has a number of vertices:

N*=N(d—1)+2 @)

We apply formula (1) to the computation of mean Wiener numbers of d-thorn trees with d
=3 and d = 4. The parent tree-graphs are those of isomeric alkanes. Their enumeration may be
done via a generating function technique which is intimately related to the approach taken to

make enumerations of isomers, e.g., as pioneered by G. Polya [18,19]. In fact to understand the
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approach it is best to first understand the Polya-theoretic enumeration of isomers. To obtain the
counts #y of N-carbon alkane structural isomers the Polya-theoretic approach develops a

generating function

P(ry=3 #,1" 3)
N20

with ¢ a dummy parameter. The development of P(1) is by way of a sequence of recursions for
various auxiliary generating functions, and computer generation of the coefficients up through a
desired number N of atoms is feasible, often with the limitation being the size of the integers #n
which can be handled exactly (with #4 having 14 digits). This overall procedure may be (and
indeed has been) implemented in a few different ways, one of which is detailed in ref. [14]. With
this enumerative procedure in hand then a similar (but slightly more complicated) development

may be made of a generating function

Wn=>w,t" @)

N20

where Wy is the sum of Wiener numbers for all N-carbon alkane structural isomers. The details
of the development of W(f) for alkanes are incompletely explained in [14], where also two
relevant equations are in error, but the completed explanation and corrected equations are given
in [15]) (along with some results for other measures of mean “extension™ of alkanes). The
recursions for the polyenoids may be obtained from those of [15] simply by deletion of all terms
corresponding to the building in of degree-4 sites. Granted results for #» and W'y one readily

obtains the average Wiener number for N-carbon alkanes as
(WG, =W', 1#, ()

Numerical results (for alkane structural isomers) up to N = 40 and N = 90 are given in

[14] and [15], respectively. Here using this approach we report results for d-thorn graphs for d =



3 and d = 4, up through N = 101, using the relation of Gutman [3,4] to obtain these results from

the mean Wiener numbers for alkanes (when d = 4), and for “polyeneoids” {when = 3).

RESULTS AND DISCUSSION

It is to be emphasized that the 4-thorn graphs need not be interpreted as H-included alkane
graphs, without a distinction between C and H atoms. All the atoms of a d-thorn graph may be
identified as C atoms, whence they form a special subclass of alkanes, containing only primary
and quaternary carbons for 4-thorn graphs and only primary and tertiary carbons for 3-thorn
graphs. Notably, such graphs realize [20] extreme values for certain graph invariants, and thence
also often realize extreme values for various molecular properties of interest. A general approach
to identifying these and other classes of extreme graphs is indicated in [20]. Because of this, we
believe that such d-thorn graphs should be of much interest.

We performed calculations of the mean Wiener index of 3- and 4-thorn trees having up to
100 parent-graph vertices, i.e., up to 200 carbon-atom polyeneoids, and up to 300 guaternary
carbon-atom alkanes. The results obtained are shown in Tables | and 2, respectively. The total
number of parent polyeneoids is also shown in Table 1. Both Table 1 and Table 2 contain the
mean graph distance <d>, a quantity closely related to the mean Euclidean distance, which has
long been a subject of inquiry related to the size and rheological properties of macromolecules
[21,22].

TABLE 1. Number of isomers #, mean Wiener number <W(3)> ,
and mean distance <d(3)> of 3-thorn trees

isomer # <W(3)> <d(3)> N isomer # <W(3)> <d(3)>
0.1000E+01 29.00 1.93 53 05133E+17  60988.04 10.56
0.1000E+01 65.00 232 54 0.1217E+18  63914.05 10.66
0.2000E+01 119.00 2.64 55 0.2889E+18 6692322 10.77
0.2000E+01 197.00 2.98 56 0.6860E+18  70016.33 10.87
0.4000E+01 296.00 3:25 57 0.1631E+19  73194.16 10.97
0.6000E+01 425.00 354 58  0.3879E+19 7645751 11.08
0.1100E+02 580.27 379 59  09234E+19  79807.13 11.18

RS I T TN 1 b



36

Table 1. (continued)

9 0.1800E+02 769.44 4.05 60  0.2200E+20 83243.79 11.28
10 0.3700E+02 986.73 4.27 61  0.5243E+20 86768.25 11.38
11 0.6600E+02 1244.03 451 62 0.1251E+21 90381.26 11.48
12 0.1350E+03 153395 472 63 0.2985E+21 94083.56 11.58
13 0.2650E+03 1864.43 493 64 0.7130E+21 97875.90 11.67
14 0.5520E+03 2232.67 513 65  0.1704E+22  101759.01 11.77
15 0.1132E+04 2644.17 533 66 04074E+22  105733.61 11.87
16 0.2410E+04 3096.93 552 67 09747E+22 10980043 11.96
17 0.5098E+04  3595.30 5.7t 68  0.2333E+23  113960.19 12.06
18  0.1102E+05 4138.42 589 69 0.5588E+23  118213.60 12.15
19 0.2384E+05 472932 6.06 70  0.1339E+24 12256136  12.24
20 0.5223E+05 5368.19 6.23 71 0.3211E+24  127004.18 12.34
21 0.1148E+06  6057.13 6.40 72 0.7701E+24  131542.75 12.43
22 0.2544E+06  6796.80 6.57 73 0.1848E+25  136177.77 12.52
23 0.5657E+06  7588.92 6.73 74 0.4437E+25 14090992 12.61
24 0.1266E+07 8434.37 6.89 75 0.1066E+26 14573989 12.70
25 0.2842E+07 9334.55 7.04 76  0.2561E+26  150668.35 12.79
26 0.6409E+07  10290.49 7.19 77  0.6157E+26  155695.98 12.88
27  0.1450E+08  11303.44 734 78 0.1480E+27  160823.45 12.97
28 0.3294E+08  12374.44 749 79  0.3563E+27  166051.42 13.05
29 0.7502E+08  13504.66 7.63 80 0.8576E+27  171380.55 13.14
30  0.1714E+09  14695.14 797 81 0.2065E+28  176811.50  13.23
31  0.3927E+09  15946.98 791 82 04975E+28  182344.92 13.31
32 09018E+09 1726120 8.05 83  0.1199E+29  187981.46 13.40
33 0.2076E+10  18638.88 8.18 84  0.2890E+29  193721.77 13.49
34 04791E+10 2008099 832 85 0.6968E+29  199566.48 13.57
35 O0.1108E+11  21588.56 8.45 86 0.1681E+30  205516.23 13.65
36 0.2566E+11  23162.59 8.58 87 0.4056E+30  211571.67 13.74
37 05957E+11  24804.03 8.70 88  (0.9790E+30 21773341 13.82
38 0.1385E+12 2651387 8.83 89  0.2364E+31  224002.08 13.90
39 03227E+12  28293.04 8.95 90 0.5710E+31  230378.30  13.99
40 0.7529E+12 3014249 9.08 91 0.1379E+32  236862.70  14.07
41 0.1759E+13  32063.15 9.20 92 0.3334E+32 24345589 1415
42 04116E+13 3405592 9.32 93 0.8060E+32  250158.48 14.23
43 09646E+13 3612172 944 94 0.1949E+33  256971.09 1431
44 0.2263E+14 3826143 9.55 95 0.4715E+33  263894.31 14.39
45  0.5317E+14 4047596 9.67 96 0.1141E+34 270928.74 1447
46 0.1251E+15  42766.15 9.78 97  0.2761E+34  278075.00 1455
47 0.2945E+15  45132.89 9.90 98  0.6683E+34  285333.68 14.63
48 0.6943E+15  47577.04 10.01 99  0.1618E+35 29270536 1471
49 0.1639E+16  50099.42 10.12 100 0.3920E+35  300190.65 1479
50  0.3871E+16  52700.88 1023 101 0.9496E+35  307790.12 14.86
51 09154E+16 5538226 1034

52 0.2167E+17 5814438 10.45

* The number of vertices N refers to the parent graph. The corresponding number for
the 3-thorn trees is N* = 2N + 2,
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TABLE 2. Mean Wiener number <W(4)> and mean distance
<d(4)> for isomeric 4-thorn trees

N <W@d)>  <d4)> N <W(4)> <d(4)>
2 58.00 207 52 118847.99 9.58

3 136.00 248 53 124573.17 9.67

4 254.50 280 54 130460.26 9.76
5
6
7
8
9

418.00 3.07 55 136510.74 9.85
640.00 3.37 56 142726.09 9.94
916.00 3.62 57 149107.74 10.02
1251.00 3.85 58 155657.15 10.11
1654.17 4.07 59 162375.74 10.19
10 2126.68 4.29 60 169264.93 10.28
11 2670.26 4.49 61 176326.13 10.36
12 3291.60 4.68 62 183560.72 10.44
13 3990.93 4.87 63 190970.08 10.52
14 4773.71 5.05 64 198555.59 10.61
15 5641.61 5.22 65  206318.61 10.69
16 6598.00 539 66 21426048 10.77
17 7645.03 5.55 67  222382.54 10.85
18 8786.10 51N 68 230686.12 10.93

19 10023.13 586 69 23917254 11.00
20 11359.03  6.01 70 247843.11 11.08
21 12796.00 6.15 71 256699.13 11.16
22 1433658  6.29 72 265741.88 11.24
23 1598297 643 73 274972.65 11.31
24 1773754 6.57 74 284392.70 11.39
25 1960244 670 75 294003.32 11.46

26 21579.91 6.83 76 303805.74 11.54
27 2367205  6.96 77 313801.21 11.61

28 2588099  7.08 78 323990.98 11.68
29 2820877 7.20 79 334376.27 11.76
30 3065743 7.32 80  344958.30 11.83
31 3322896 744 81 355738.30 11.90
32 3592532 7.56 82  366717.46 11.97

33 3874844 767 83 377896.99 12.04
34 4170021 .79 84 389278.08 12.12
35 4478251 7.90 85  400861.92 12.19
36 47997.17 8.0l 86 412649.68 12.26
37 5134603  8.11 87 424642.53 12.33
38 5483086 822 88  43684].64 12.39
39 5845344 833 89  449248.17 12.46
40 6221552 843 90  461863.27 12.53
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TABLE 2. (continued)

41 66118.81 8.53 91 474688.09 12.60
42 70165.01  8.63 92 487723.75 12.67
43 7435581 873 93 500971.40 12.73
44 7869288  8.83 94 514432.17 12.80
45  83177.84 893 95  528107.16 12.87
46 8781233  9.02 96  541997.50 12.93
47 9259795  9.12 97  556104.29 13.00
48  97536.28 921 98  570428.64 13.07
49 10262891 931 99  584971.64 13.13
50 10787738 940 100 599734.38 13.20
51 11328323 949 101 614717.96 13.26

“ N is number of vertices in the parent alkane tree. The number of
vertices in the 4-thorn tree is N* = 3N + 2.

Because of the relation of eq. (1), the asymptotic behavior for alkanes

<W(T)>,=AN*"? ©6)
carries over to the 4-thorn trees as

< W(TH) >p.= AX(NH? (6a)

with A* = A(d-1)"". A similar relation applies between polyeneoids and 3-thorn graphs.
Further studies on the properties of d-thorn graphs are in progress [23]. Hopefully these
various results can find application in polymer theory, related to polymer statistics and polymer

properties.
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