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Abstract. All geometrical information is missing in topological, i.e. graph theoretical
description of connectivity in molecules. However, a part of molecular geometry could be
recovered if some of existing graph drawing algorithms is invoked. For a given molecular
graph G on »n vertices such an algorithm computes the position of vertices
R(G)= (1, r,,...,r,)in 3D-space. Here we use the recently introduced NiceGraph Program
(NGP) [1] which is a part of the computer program Vega [2].

But on other hand a relationship between topology and geometry of molecules could be
reversed, i.e. when molecular connectivity is reconstructed from the molecular geometry data.
Recently, we have proposed the Overlapping Spheres (OS) Model as a way to obtain a
plausible molecular graph G’ = G'(R) after a set of n points R in 3D-space is given.

If for a given graph G its respective 3D-drawing leads to a graph G’ identical to G, i.e. if
G'(R) = G, the graph drawing algorithm is said to be self-consistent; otherwise it is not self-
consistent. The consistency of the NGP was tested recently [3] on the selected set of 40
molecular graphs and 30 out of these graphs have passed the consistency test. The
discrepancy can be attributed to the fact that the NGP do not take into account the angles
during the calculation process.

The aim of the present paper is to improve the OS model by angles considerations. Such a
model we call Overlapping Spheres with Angles (OSAN) Model. Two algorithms were
developed within the OSAN model and their self-consistency tested. The results obtained
show that the OSAN model ensures a rather self-consistent and acceptable framework to
reproduce the connectivity of molecules. Considering a test group of graphs used in tests, a
success rate of the OS model algorithm is 83% meanwhile a success rate of the first OSAN
algorithm reaches 95%.

" Dedicated to Professor Alexandru T. Balaban on the occassion of his 70" birthday.
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INTRODUCTION

Graphs are abstract mathematical objects suitable for describing topology of molecules,
namely the connectivity of their constituent atoms. All geometrical information is missing in
such a description. A step from topology to geometry is conveniently done by applying some
of quantum mechanical models like molecular mechanics and others. The interplay between
topology and geometry has been already studied in chemical literature [4,5]. However, a part
of molecular geometry is recovered after some of existing graph drawing algorithms is
invoked. For a given molecular graph G on n vertices such an algorithm computes the

position of vertices R(G)=(7,r,,...,r,) in 3D-space. In the present paper we use the recently

introduced NiceGraph Program (NGP) [1] which is part of the computer program Vega [2]. In
principle the same approach can be used in connection with any other graph drawing
algorithm, see [6,7].

But on the other hand a relationship between topology and geometry of molecules could
be reversed. A step from geometry to topology is involved in e.g. crystallography where
molecular connectivity has to be reconstructed from the molecular geometry data. Recently,
we have proposed the overlapping spheres (OS) model as a way to compute a plausible
molecular graph G’ = G'(R) after a set on x points R in 3D-space is given.

If for a given graph G its respective 3D-drawing R leads to a graph G’ identical to G, ie.
if G'(R) = G, the graph drawing algorithm is said to be self-consistent; otherwise it is not self-
consistent.

The consistency of the NGP was tested recently [3] on the set of 40 molecular graphs
describing unbranched and branched chains, cata- and pericondensed benzenoids, non-
benzenoids and fullerenes. Out of these 40 examples, 30 have passed the consistency test.

The discrepancy can be attributed to the fact that the NGP ignores all angles during the
calculation process. These angles, as it is known in chemistry, have a rather limited range of
values, and in e.g. carbon hydrocarbons the angles between incident edges equal to 180°£1°,
120°+ 3% and 109.5°+ 5° for sp-, sp’- and sp™-hybridized carbons, respectively.

In the original algorithm (OS model) we were given m=IE(G)I, expected number of
edges. Starting with empty graph on n vertices, we gradually included all possible edges into
the graph in the ascending order of their lengths, thereby obtaining a series of graphs
E,cG,cG <..cG, =K, where E, is an ecmpty graph and K, a complete graph. If the
first graph with m edges in series G,,...,GG, was equal G, we declared success and otherwise a

failure.
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METHOD

After the 3D positions r, of all vertices u € V(G) of graph G are determined (here by the

NGP), we define the distance between a pair « and v of vertices as d(u,v) =

.~ 1|, and then
we compute all distances in G. Let n = IV(G)| and let us define a set:
8§ ={G. j.dG, MV, j=12....m i< j}.

By sorting the triplets in § by the third component in increasing order we obtain (ordered)
sequence of triplets s,,s,....€ §. Let us start with G’ = E,, a graph containing only n isolated
vertices and therefore its edge set E' = E(G') is empty. We go on then over elements s §
according to the increasing values of their third components (d(i,j)), and if for a given s = (u,
v, d(u v)) the edge (u,v) is not incident to previous edges it is added to G', and if it is incident
with a number of previous edges then all the respective angles of these edges with edge (u,v)
are calculated. The angle between two incident edges (i, j) and (i, k) is defined by

(r, = 1) =)

[ = rn =) A

6 = arccos

Here the improvement with regard to the OS model enters, namely we introduce some
minimal allowed (threshold) angle & .. . We add the edge (u, v) to G’ only if its angles with all
previous (incident) edges are =6, . If we go on with traversing until m =IE(G)| edges are
obtained in the final graph, we speak of algorithm I. However, it could happen that not all m
edges are obtained, or if the obtained edges do not neccessarily reconstruct the original edges

of G. If we do not restrict to m edges but we proceed with traversing with respect to a given
6,

min ¥

we speak of algorithm 2.

In numerical experiments to be described later, the values of 8, are varied from 0° to

min

120°, and their influence on the ability of the final graphs to reproduce the original topology is

discussed.

Formal description of OSAN algorithm

Let A{vertices V, integer m, angle 8,

min /b€ our algorithm where:

v are vertices embedded in Euclidean 3D space;
m exepcted number of edges;
#,. a threshold angle.
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funcrion angle(e, £} calculates an angle between incident edges e and f.

F. {an empty graph}
=

V' = V(G')
Vertices V(G') are enumerated with as 1, 2, ve M= IV(GT) 1.
Positions of vertices in 3D space are given with vectors r;, i = 1,2,....0.

S ={. j,dG, i, j=12,.,n}, where dG,j)=|r -1

181 >
(.\‘,)re; =elements of S sorted by the third component

n(n—1
for i:= 1 to { )

s; = (ug, v, dfus, vil)
forall edges f in E'
if (f incident to u;v;)
if (9m> angle(f, u;vi))
proceed with next i from the

beginning of for i:= ... loop
endif
endif
endforall
",

E'=E'Uluy,}

if(1E'BEm) return G' - (v', E£') ({at algorithm 1 only}
endfor
return G’ = (V*', E')

Function angle (e, f) calculates the angle that is spanned between two incident edges e
and f.

To test both of algorithms we perform a following test. For given graph G we produce its
drawing with the NGP algorithm. Then we remove all edges from the drawing and apply our
algorithms for a fixed, but otherwise arbitrary threshold angle 8, from 0° to 120°.

After running one of these algorithms we obtained the final graph G'. If G' = G we
declared a success and otherwise a failure.

In order to determine the optimal values of parameter 8, we ran a series of tests on the
same data set as in [3]. Given a graph G we were interested in those ranges of parameters #,,,
where algorithm 1 and algorithm 2 produce a success. Angles in those intervals are called a
successful angles. The aim of the present paper is to find minimal and maximal &,
successful angles for the test data set. Our experiments will show that this is not always
possible but the OSAN hits more successes than OS model. Having in mind only a plausible
character of the NGP results, it is not surprising that the range of acceptable lower and upper
limits of threshold angles is far broader and in general different from ranges of allowed angles
found in chemistry.
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GRAPH SPREAD AND GEOMETRICAL SPREAD

Given a connected graph G the standard graph theoretical distance metrics is defined as:
d(u,v) = minimal number of edges on any path between vertices  and v. Maximal distance
from vertex v in graph G is defined as: md(u) =max d(u,v). A graph spread is defined as:

veV(G)
max md (u)
GIS(G)= =2 —
min md(u)

ue(G)

Graph spread is a number between 1 and 2. If for some graph G graph spread is near 1
then the graph is uniformly spread in all directions according to the graph theoretical metrics
d. If graph spread is near 2, graph is spread in some directions more than in others.

Given a 3D drawing R(G) = (r,n,,....r,) of graph G, a geometrical spread is defined as:

d(r,r))

1S4, j<
GeS(G)= —LF———,
( min d(r,,r;)
156, j<n

where d stands for standard Euclidean metrics.
To predict a success of both OSAN algorithms, a correlation success of algorithms vs.
graph spread (geometrical spread) is studied.

RESULTS

Let us show how restrictions on angles could account for a proper topology, i.e.
connectivity of vertices. After the coordinates of vertices are obtained by performing the NGP
algorithm on a graph G, OSAN algorithms are performed on the set of the vertices. We have
tested the OSAN algorithms on the set of over 40 chemical graphs. As our data set contains
the graphs of planar molecules all our computations have been performed in 2D rather than in
3D Euclidean space. However, this restriction is easily lifted.

The Figure 1 shows a number of successes at different minimal threshold angles &, for
algorithm 1. When the threshold angle equals 0, algorithm 1 performs like the OS algorithm.
Increasing the threshold angle €, a number of sucesses increases up to 6, = 67°. At the
greater angles the number of successes decreases. So the value 8, = 67° is the optimal value

for the set of graphs considered. Let us remind that the algorithm reaches success for all
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graphs in the test group for some angle @, . but the angle ranges are quite different. The

Figure 2 shows the angle intervals sorted by the minimal threshold angle of a success for the
algorithm 1.

The tests on the same group of graphs were also performed with the algorithm 2. As
expected, the algorithm 2 is less successful. The Figure 3 shows the number of successes of

the algorithm 2 at the different threshold angles &,

min *

The Figure 4 shows the intervals of the
angle @, for all graphs when the algorithm 2 recovers the original graph. As we se¢
algorithm 2 is successful for some threshold angle @ ., in all but 4 graphs. The drawings of
these four graphs are depicted in Figure 5. A success of the algorithm 2 strongly depends of

the chosen threshold angle €, . As we can see from the Figure 3, good angles are somewhere

between 70° and 90°, and optimal angle is 72°.
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FIGURE 1.Percentage of successes at the different threshold angles for algorithm 1
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Sorted by Min Angles
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FIGURE 4. Ranges of successful threshold angles for algorithm 1

FIGURE 5. Graphs with no success at algorithm 2

Considering the NGP algorithm, it is noticed, that the greater the graph (geometrical)

spread the more are the angles incorrect, as we see from e.g. Figure 5. So it is interesting to

see if any correlation between the spreads and success of algorithms 1 and 2 (and through this
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a correlation with consistency of the NGP algorithm). For all graphs, all spreads are
calculated and charts of the interval width of the successful angles vs. the spreads for both
algorithms are plotted (see Figure 6). On all charts in Figure 6 a linear regression line is
drawn. Increasing any spread, the widths of the threshold angle intervals in general shorten, as
expected. So both spreads are negatively correlated with the success of OSAN algorithms.

To predict an optimal threshold angle for OSAN algorithms we study a correlation
between the geometrical spread and the middle angle of the interval of the successful
threshold angles (see Figure 7). Here the corelation is stronger for both algorithms. With

linear regression we get the following empirical formulas:

algorithm 1: 8,,, = -10.6 GeS(G) + 67.7
algorithm 2: 8,,, =-17,7 GeS(G) + 106,1

At the linear regression for algorithm 2, 4 graphs with no successful angle are omitted.
The formulas could be used to predict optimal threshold angle parameters used in OSAN
algorithms.
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FIGURE 6. Successful threshold angle interval width vs, spreads
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FIGURE 7. Middle angles of successful angle intervals vs. geometrical spreads
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FIGURE 7. (continued)

CONCLUSION

From the data of 40 chemical graphs it is infered that the threshold angle has optimal
value &, = 70° + 3°. At this value the algorithm 1 recognizes 90% of graphs while the

opt
algorithm 2 recognizes 70% of sample. The algorithm 1 has superior recognition rate
compared with the OS model. The algorithm 2 has lower recognition rate than the OS model,
but it does not need additional parameter about expected number of edges.

The OSAN model can be used at setting parameters in the NGP algorithm so the greater
consistency could be reached. A representative test group of graphs could be chosen and
successes at different threshold angles could be measured at the different NGP parameters. A
similar tests like these made on planar molecular graphs could be done for molecular graphs
in 3D space. (e.g. fullerenes).

The OSAN model includes the OS model and it is more powerful and successful. As
drawings produced by the NGP algorithm more or less ignore the information about chemical
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angles it is belived that success would be much more greater if the drawings were more like in
actual molecular geometry.

The OS model and the OSAN model algorithms could be used for testing a consistency of
other molecular graph drawing algorthms, see [6,7].
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