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Abstract. Recently Randi¢ [1] has proposed a set of new graph invariants: the graph valence
shells. A valence shell s(u), is the sum of valences (degrees) of all vertices placed at distance
k - | from vertex u. The graph valence shell s, is the sum of valence shells s(u);. Consider an
acyclic graph T. It has been proved that sy = px _; + px. where py denotes the number of paths
of length k in T.

INTRODUCTION
Recently Randi¢ (1] has proposed a set of new graph invariants: the graph valence
shells. A valence shell s(u)y is the sum of valences (degrees) of the vertices placed at a
constant distance k — 1 from a given vertex u. Randi¢ has not given an explicit formula for

s(u), but the following expression is in full agreement with Randi¢’s definition:
sl = Zid(k - 1- duj) vi ()

where dy; denotes the distance between vertices u and i, and v; denotes the valence of a vertex
i, 8 is a function which is equal to 1 if the argument is zero, and is zero in all other cases. &
picks out a vertex placed at distance d,; from u. The summation has to be performed for all N
vertices in T. Graph valence shell sy can be obtained by summing expression (1) for all

vertices u, and dividing the result by two:

Se = 2y S(U/2 (2)
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The calculation of s, can be illustrated by using a simple example (FIGURE 1). As an
illustration obtain ss: The valence shell of vertex I is 2 (valence of vertex 5). Contribution of
vertex 2 is 1 (valence of vertex 6), contribution of vertex 5is | + 1 = 2 (sum of valences of
vertices 1 and 7), contribution of vertex 6 is 6 (sum of valences of vertices 2, 8 and 9). The
contribution of vertex 7 is 2 (valence of vertex 5) and the contributions of vertices 8 and 9 are
I, each. Therefore ss =(2+ 1 + 2 + 5 + 2 + 2)/2 = 7. Graph invariants based on "concentric
shells’ (or layers) have already been discussed [2-6] and graph valence shells happen to be a
subclass of this more general approach.

Graph valence shells s;, s3 and s4 have been shown by Randié¢ to form an appropriate
set of indexes that can be used in structure-property relationships. More specifically Randié
found that combinations of p, p3, ps and sa, 83, s4, respectively, resulted in multiple regression
equations with identical statistical parameters. (The boiling points of octanes were considered
as the dependent variable.) This result could only have been obtained if p, ps, ps and s3, s3, 84

are linear transforms of each other. Actually Randié has observed that

pitp=% 3
p2tpi=s3 @
Pi+Pps=sa 5

The aim of this paper is to prove that these relationships are valid, and that they are

instances of a more general theorem:

Theorem: Let T be a tree and let py denote the number of distances of length k, while s

denotes the k-th graph valence shell in T. Then

Pk-1 + Pk = Sk ©)

PROOF OF THE THEOREM

Let’s first show that



281

PL+p2=8% 7

because the argumentation will reveal the relationship between s; and the Zagreb indices [7].
Vertices contributing to s, are the first neighbours of vertex u (eq. 2). Each vertex u has v,
first neighbours. For each first neighbour the contribution to s; is equal to v, therefore the

total contribution of u is v.,z. and we obtain:
s2=Ta /2 (8)

Division by 2 has been introduced in accordance with Randi¢’s definition [1]. Eq. (8)
indicates the close relationship between s; and one of the Zagreb indices [7]. Eq. (8) may be

rewritten:
$2= X0 Vo l2 = Xy valva = 12 + T vil2 )

The second term on the right hand side of eq. (9) is equal to p; (the number of edges in T)
because of the ‘handshake’ lemma. The first term is equal to the number of times a path of
length two (l,) can be placed on vertex u. Therefore the first term of eq. (9) is equal to p; and
P+ p2= 82

In order to derive p: + ps = s3, observe that all second neighbours of u have to be
considered now. The second and third columns of Table 1 indicate how many times paths of
length two (I;) and of length three (13) can be placed upon the substructures Kp, [8,9]. Note
that Kmn will denote the substructure and the number this structure appears in T. The forth
column of Table 1 can be obtained by inspection of the respective substructures Ky, As an
exercise consider substructure k;3: the endpoint will contribute (two times) to s(u)s;, and its
contribution is 1 for each neighbour (free valence), therefore the total contribution of kia is
equal to 2. As a second example consider k»;: Each vertex will contribute 2 to s(u)s, the sum
of these contributions is equal to 4. In general the contribution of ku, to s(u)s is equal to (m-

Dn + (n-1)ym.



TABLE 1. Substructures ky, and their contributions to s(u)s.
Endpoints are denoted by black dots.

Substructure Number of times 1 Number of times 1; | Contribution to s(u);
can be placed upon can be placed upon
kllll| -min
e—e
. 0 0 0
—0—
Kig 1 0 1
-0 5
Kis 2 0
*—0 <
K 3 0 3
14
S P o S
K22 2 1 4
—0—0<L
ka3 3 2 7
_o_o<
Kk 4 3 10
24
>0—-0<
X 4 4 12
33
Kmn (m-1)+(n-1) {(m-1)x(n-1) (m- 1 )n+(n-1)m

The sum of substructures is equal to the number of edges [8,9]:

T Kona = 1 (10)

The number of paths of length two (p2) is (Table 1}):

Zon Knn(m + 0 - 2) = 2py (11)

The factor of two on the right hand side appears because each vertex was considered two

times in eq. (11). The number of paths of length three (p3) is (Table 1):

Lo Kann(m - 1)(n - 1) = p3 (12)















