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Abstract. Recently Randi¢ [1] has proposed a set of new graph invariants: the graph valence
shells. A valence shell s(u), is the sum of valences (degrees) of all vertices placed at distance
k - | from vertex u. The graph valence shell s, is the sum of valence shells s(u);. Consider an
acyclic graph T. It has been proved that sy = px _; + px. where py denotes the number of paths
of length k in T.

INTRODUCTION
Recently Randi¢ (1] has proposed a set of new graph invariants: the graph valence
shells. A valence shell s(u)y is the sum of valences (degrees) of the vertices placed at a
constant distance k — 1 from a given vertex u. Randi¢ has not given an explicit formula for

s(u), but the following expression is in full agreement with Randi¢’s definition:
sl = Zid(k - 1- duj) vi ()

where dy; denotes the distance between vertices u and i, and v; denotes the valence of a vertex
i, 8 is a function which is equal to 1 if the argument is zero, and is zero in all other cases. &
picks out a vertex placed at distance d,; from u. The summation has to be performed for all N
vertices in T. Graph valence shell sy can be obtained by summing expression (1) for all

vertices u, and dividing the result by two:

Se = 2y S(U/2 (2)
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The calculation of s, can be illustrated by using a simple example (FIGURE 1). As an
illustration obtain ss: The valence shell of vertex I is 2 (valence of vertex 5). Contribution of
vertex 2 is 1 (valence of vertex 6), contribution of vertex 5is | + 1 = 2 (sum of valences of
vertices 1 and 7), contribution of vertex 6 is 6 (sum of valences of vertices 2, 8 and 9). The
contribution of vertex 7 is 2 (valence of vertex 5) and the contributions of vertices 8 and 9 are
I, each. Therefore ss =(2+ 1 + 2 + 5 + 2 + 2)/2 = 7. Graph invariants based on "concentric
shells’ (or layers) have already been discussed [2-6] and graph valence shells happen to be a
subclass of this more general approach.

Graph valence shells s;, s3 and s4 have been shown by Randié¢ to form an appropriate
set of indexes that can be used in structure-property relationships. More specifically Randié
found that combinations of p, p3, ps and sa, 83, s4, respectively, resulted in multiple regression
equations with identical statistical parameters. (The boiling points of octanes were considered
as the dependent variable.) This result could only have been obtained if p, ps, ps and s3, s3, 84

are linear transforms of each other. Actually Randié has observed that

pitp=% 3
p2tpi=s3 @
Pi+Pps=sa 5

The aim of this paper is to prove that these relationships are valid, and that they are

instances of a more general theorem:

Theorem: Let T be a tree and let py denote the number of distances of length k, while s

denotes the k-th graph valence shell in T. Then

Pk-1 + Pk = Sk ©)

PROOF OF THE THEOREM

Let’s first show that
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PL+p2=8% 7

because the argumentation will reveal the relationship between s; and the Zagreb indices [7].
Vertices contributing to s, are the first neighbours of vertex u (eq. 2). Each vertex u has v,
first neighbours. For each first neighbour the contribution to s; is equal to v, therefore the

total contribution of u is v.,z. and we obtain:
s2=Ta /2 (8)

Division by 2 has been introduced in accordance with Randi¢’s definition [1]. Eq. (8)
indicates the close relationship between s; and one of the Zagreb indices [7]. Eq. (8) may be

rewritten:
$2= X0 Vo l2 = Xy valva = 12 + T vil2 )

The second term on the right hand side of eq. (9) is equal to p; (the number of edges in T)
because of the ‘handshake’ lemma. The first term is equal to the number of times a path of
length two (l,) can be placed on vertex u. Therefore the first term of eq. (9) is equal to p; and
P+ p2= 82

In order to derive p: + ps = s3, observe that all second neighbours of u have to be
considered now. The second and third columns of Table 1 indicate how many times paths of
length two (I;) and of length three (13) can be placed upon the substructures Kp, [8,9]. Note
that Kmn will denote the substructure and the number this structure appears in T. The forth
column of Table 1 can be obtained by inspection of the respective substructures Ky, As an
exercise consider substructure k;3: the endpoint will contribute (two times) to s(u)s;, and its
contribution is 1 for each neighbour (free valence), therefore the total contribution of kia is
equal to 2. As a second example consider k»;: Each vertex will contribute 2 to s(u)s, the sum
of these contributions is equal to 4. In general the contribution of ku, to s(u)s is equal to (m-

Dn + (n-1)ym.



TABLE 1. Substructures ky, and their contributions to s(u)s.
Endpoints are denoted by black dots.

Substructure Number of times 1 Number of times 1; | Contribution to s(u);
can be placed upon can be placed upon
kllll| -min
e—e
. 0 0 0
—0—
Kig 1 0 1
-0 5
Kis 2 0
*—0 <
K 3 0 3
14
S P o S
K22 2 1 4
—0—0<L
ka3 3 2 7
_o_o<
Kk 4 3 10
24
>0—-0<
X 4 4 12
33
Kmn (m-1)+(n-1) {(m-1)x(n-1) (m- 1 )n+(n-1)m

The sum of substructures is equal to the number of edges [8,9]:

T Kona = 1 (10)

The number of paths of length two (p2) is (Table 1}):

Zon Knn(m + 0 - 2) = 2py (11)

The factor of two on the right hand side appears because each vertex was considered two

times in eq. (11). The number of paths of length three (p3) is (Table 1):

Lo Kann(m - 1)(n - 1) = p3 (12)
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Finally for s3we obtain (Table 1):

2 mn Knn(2min - m -n) = 2s; (13)

Combining egs. (11), and (12) we obtain:

2p2+ 2p3 = Egun Kol (M + 11 - 2) + 2(m - 1)(n - 1)] = Zpnp Kyna(2mn - m-n) = 25 (14)

and from this p; + p3 = s follows immediately.

Next prove that pey + px = si. In order to obtain e.g. ps + ps = s4, leave the free
valences in TABLE 1 unaltered, and replace the edge with symbol — —, where the square
denotes a vertex of any degree. Replace symbols 1 and I3 by 3 and ls, respectively, and
modify the definition of substructure Kyn: kmn Will now denote the substructure (and the
number of such substructures), which was obtained replacing the edge in kpyy by — —. Then an
analogous argumentation given for the p; + ps = s3 case can be applied. Similarly if in turn
is replaced by — (etc.), the same reasoning can be applied. Therefore we obtain that py.; +
Pk = Sk

The theorem remains valid for po and p,. Since po (the number of paths of length zero)
is equal to zero, and p; = N — | (the number of edges in T), pa + p1 = 81, because of the

‘handshake’ lemma.

DISCUSSION

Path-counts can easily be determined by inspection of the matrix D composed of the
distances d;j. The number of times any number k appears in the upper right hand side of D is
equal to pi. Therefore all values of s, can be obtained in a more simple manner, than by using
eq. (1).

Eq. 6 can be expressed in matrix form:

Bp=s (15)
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where p is vector containing path counts px (k = 1,....m), and m denotes the value of the

maximal distance in T.

valence shells s (k = 1...

[
[
B= 0
[0
lo

Similarly s is a vector consisting values of the individual graph

.,m). The structure of matrix B is the following in case N = 5:

0 0 0 ol
1 0 0 ol
1 1 0 ol
0 1 1 ol
0 0 1 1)

Through inversion of B we obtain:

[1
f-1
B'= |1
-1
L1

And therefore:
p=B's

FIGURE 1.

0 0 ol
1 0 0 ol
-1 1 0 ol
1 -l 1 ol
-1 - 1)
(16)
7
4
6
3
1 2
5
8
9
Hydrogen suppressed graph of 2,3,3-trimethyl-hexane.
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The regular structure of B will not change with other values of N, and we can write:

[ 0ifi<j
(B = ] N
LD if i>j

and therefore expressing path counts in term of graph valence shells:

pi=s1 an
p2=-S1+$2 (18)
PI=S1-5+53 (19)
Pa=-8 + 82~ 83+ S4 (20)
Ps=81-S2+83- 84+ S5 (21

etc.

Several examples of equivalences between topological indices have been reported in
the literature [10,11}: it was found that the well-known Wiener index [12] and the Schultz
index [13] are related and the resistance distance [14] and the “quasi Wiener index™ [15] are
also related. Basak et al. [16] after inspecting more than 200 topological indices concluded
that the indices could be grouped into various (more or less distinct) classes. Klein and
Gutman [17] found that distance based indices are all mutually related and can be expressed
in terms of distance distribution moments. Finally we have shown that s; is equivalent with
one of the Zagreb indices [7].

As a matter of fact it is questionable whether a graph-theoretical index exists, which is
not related to any other (graph) invariant at all. Skvortsova et al. [18] found several invariants
they considered basic. A similar result was obtained by Estrada and Rodriguez [19], who
found that the edge-connectivity index does not (practically) depend on other considered
types of topological indices.

Path-counts py.;, px and the graph valence shells sy are linear transforms, therefore, and
in contradiction to Randi¢’s conclusion, they do not represent independent features. On the
other hand, if such (qualitatively different) indices like path counts and graph valence shells

are equivalent, then - using Kirby’s wording [20] - what does a topology index index?
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