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Abstract. Chemical structures of organic compounds are characterized
numerically by a variety of structural descriptors computed either from the
molecular graph or from the three-dimensional (3D) molecular geometry.
Extensive use of such structural descriptors or topological indices has been made
in drug design, screening of chemical databases, similarity and diversity
assessment, and quantitative structure-activity relationships. In recent years a
large variety of topological indices were derived from different sorts of graph
distance functions which have been considered to characterize the molecular
shape and structure. These include not only the shortest-path distance but also the
resistance distance and the quasi-Euclidean distance. A comparison is made
between five intrinsic graph distance functions and the geometric distance for a set
of benzenoid hydrocarbons. Overall, a very good correlation is obtained for all
graph distances, indicating that the graph descriptors derived from them capture
some part of the 3D information of the molecular structure.,

INTRODUCTION

Professor Alexandru T. Balaban (Sandy) is one of the early developers and proponents

of the field of topological indices (TIs) which are chemical descriptors derived from the

* Dedicated on the occasion of the 70" birthday to Professor Alexandru T. Balaban, who has
long pursued the use of topological indices as QSAR and QSPR descriptors
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molecular graphs, particularly of organic compounds, and which characterize numerically the
molecular structure. Several recent reviews present the main uses of TIs in quantitative
structure-property relationships (QSPR) and quantitative structure-activity relationships
(QSAR), similarity and diversity assessment, database mining and in the virtual screening of
combinatorial libraries [1-7]. One of the earliest and widely used topological index is the
Wiener index W [8,9], derived from the shortest-path distances in a molecular graph. Its
successful application in QSPR and QSAR stimulated the research in the domain of descriptors
based on weighted graph distances [10], related novel molecular matrices [11] and other
Wiener-like indices [12-16]. Elements of the distance matrix were used to define degree-
distance VTT indices [17]; such vector-matrix invariants can generate TIs with a low
degeneracy. The idea to use reciprocal distances in computing V77 indices was adopted in the
definition of the reciprocal distance matrix RD [18-22]. Another distance measure was defined
as the resistance distance matrix € [23]; this metric is identical with that induced by the
distance matrix only for acyclic compounds, while for cyclic compounds the resistance distance
matrix offers the possibility to compute W', an index related but not identical to the Wiener
index. This original graph metric [24,25] was used to characterize the molecular cyclicity and
centricity of polycyclic graphs [26] and to compute graph invariants for fullerenes [27]. Other
recently defined distance-related matrices are the detour A [28], detour-distance A-D [28],
distance-valency Dval [29], complementary distance CD [30], reciprocal complementary
distance RCD [30], and reverse Wiener RW [31] matrices.

The possibility to compute the geometrical structure of (almost) any chemical
compound with various molecular mechanics or quantum mechanics software and the growth
of chemical databases containing the three-dimensional structure of a large number of
compounds, it becomes possible to generate structural descriptors directly from the molecular
geometry. Such structural invariants, computed from three-dimensional molecular geometry
with equations initially defined for graph descriptors, are called topographic indices [32-38].
The structural descriptors computed from the molecular geometry offer a simple and efficient
way for treating molecules with heteroatoms and multiple bonds. Using only the constitutional
(connectivity) information contained in the molecular graph it is not possible to discriminate
between cis/trans (E/Z) or other types of stereoisomers; however, topographic indices have

different values for stereoisomers, and their use in QSAR/QSPR equations can improve their
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predictive ability. In this paper we study the statistical relationship between five intrinsic graph
distance functions and the geometric distance for a set of benzenoid hydrocarbons. This
comparison can indicate the extent of overlap between the structural information contained in

graph descriptors and geometric descriptors computed with the same formula.

COMPUTATION OF VARIOUS DISTANCE FUNCTIONS

In this section we briefly present the five graph distance functions used in the
comparison with the geometric distance for a set of molecular graphs. Each distance function
encodes some aspect of the molecular characteristics (perhaps the “shape” of a molecular

structure).

The Shortest-Path Distance d

The shortest-path distance d is the standard distance function used in computing
topological indices from molecular graphs. In simple (nonweighted) molecular graphs, in which
all vertices represent carbon atoms and all edges represent carbon-carbon single bonds, d(i.j)
between vertices v; and v; equals the number of edges on the shortest path between v; and v;.
For weighted molecular graphs, representing organic molecules containing heteroatoms and
multiple bonds various weighting schemes have been developed for computing the shortest-

path distance d [3].

The Square-Root Shortest Path Distance d,,

The square-root shortest path distance d» was defined by Zhu and Klein [24] on the

basis of the graph distance -
dini) = {din}" )

That is, this function d\» turns out also to satisfy the conditions (positivity, symmetry, and

triangle conditions) which make it a distance function.
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The Resistance Distance Distance

Klein and Randi¢ introduced a new distance function on graphs named resistance
distance, applying some results from the electrical network theory [23]; this novel graph
distance was utilized to define the resistance distance matrix €2, proposed as an alternative to
the distance matrix D). For the computation of the molecular matrix €, Klein and Randié
superposed onto the molecular graph G an electrical network of resistors, in such a way that
carbon atoms become nodes in the network and carbon-carbon single bonds are represented as
1 ohm resistors; the matrix element (i,j) is equal to the effective electrical resistance between
the vertices v; and v;. From the theory of electrical networks it is easy to determine that in the
case of acyclic compounds, the resistance distance matrix Q is identical with the distance
matrix D, while in the case of cyclic compounds the two matrices are different. From the
several algorithms proposed for the computation of the resistance distance matrix Q [23-25]
we have used the one that uses the eigenvalues and eigenvectors of the Laplacian matrix L(G)

of the molecular graph G with N vertices:
L =UAU' 2)

where U is an NxN column matrix of eigenvectors of the Laplacian matrix L, U' is the
transpose matrix, and A is an NxN diagonal matrix containing on the main diagonal the
eigenvalues of L; the eigenvalue [A]; corresponds to the eigenvector from the i-th column of
matrix U. The NxN diagonal matrix V is computed from the eigenvalues of the Laplacian
matrix L:
vl Z{O ; %f [AL =0 @
vOOLAY i AL 20

For any connected molecular graph the Laplacian matrix L has all eigenvalues positive except
for one which is 0; the generalized inverse of L is the matrix I' which is 0 on this null

eigenspace and the “true” inverse on the subspace orthogonal to this null space:

r=uvy' 4

Then the resistance distance between vertices v; and v; is
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The computation of the resistance distance matrix Q of a simple (non-weighted) graph is

presented for the molecular graph 1, representing 1,2—dimethylcyclobutane.

The Laplacian matrix of 1,2—dimethylcyclobutane 1 is:

L)
1 2 3 4 5 6
1 1 -1 0 0 0 0
2 -1 3 -1 0 -1 0
3 0 -1 2 -1 0 0
4 0 0 -1 2 -1 0
5 0 -1 0 -1 3 -1
6 0 0 0 0 -1 1
The generalized inverse of L(1) is the matrix I'(1):
ra)
1 2 3 4 5 6

1 0.965 0.132 -0.160 -0.285 —0.243 —0.410
2| 0132 0299 0.007 -0.118 -0.076 -0.243
3] 0160 0.007 0465 0090 -0.118 -0.285
4 | -0.285 -0.118 0.090 0465 0.007 -0.160
51 -0.243 -0.076 -0.118 0.007 0299 0.132
6| 0410 -0.243 0285 -0.160 0.132 0.965

From Eq. (5) one obtains the corresponding resistance-distance matrix (1):

Q1)

1 2 3 4 5 6
0.000 1.000 1750 2.000 1750 2750
1.000 0.000 0750 1.000 0.750 1.750
1.750 0.750 0.000 0.750 1.000 2.000
. . 0.750 0.000 0.750 1.750
1.750° 0.750 1.000 0.750 0.000 1.000
2750 1.750 2.000 1.750 1.000 0.000

AW -
(2]
—
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An identical result can be obtained by applying the “series” and “parallel” transformation rules
for an electric circuit of 1 ohm resistors corresponding to the molecular graph 1. The second
example for the computation of the resistance-distance matrix £ considers a bicyclic

compound, bicyclo[2.2.1]heptane (norbornane) 2:

1
6 2
5 3
4
2
The Laplacian matrix of norbornane 2 is:
L2)
1 74 3 4 5 6 bk
1 2 -1 0 0 0 -1 -1
2 -1 2 -1 0 0 0 0
3 0 -1 2 s 0 0 0
4 0] 0 -1 & -1 0 -1
5 0 0 0 -1 2 -1 0
6 -1 0 0 0 -1 2 0
7 -1 0 0 -1 0 0 2
Using Eq. (4) one obtains the generalized inverse of L(2), the matrix I'(2):
T(2)
1 2 3 4 5 6 7

0.306 0.020 -0.122 -0.122 -0.122 0.020 0.020
0.020 0497 0.116 -0.122 -0.218 -0.170 —0.122
-0.122  0.116 0497 0.020 -0.170 -0.218 -0.122
-0.122 -0.122 0.020 0306 0.020 -0.122 0.020
—-0.122 -0.218 -0.170 0.020 0.497 0.116 -0.122
0.020 -0.170 -0.218 -0.122 0.116 0497 -0.122
0.020 -0.122 —0.122 0.020 —0.122 -0.122 0.449

~N R W -

The generalized inverse matrix I'(2) gives the corresponding resistance-distance matrix £(2):
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Q(2)

1 2 3 4 5 6 7
0000 0.762 1.048 0857 1.048 0762 0.714
0762 0.000 0.762 1.048 1.429 1.333 1.190
1.048 0762 0.000 0.762 1333 1429 1.190
0.857 1.048 0.762 0.000 0.762 1.048 0714
1.048 1.429 1333 0762 0.000 0.762 1.190
0.762 1.333 1429 1.048 0.762 0.000 1.190
0.714 1.150 1.190 0.714 1.190 1.190 0.000

N AWV W -

The hand application of the “series” and “parallel” transformation rules for electric circuits is
often more difficult for polycyclic molecular graph and in some cases (as for many “cage”
molecules) the technique is insufficient; in such cases it is preferable to compute € via Egs. (2-

5).
The Square-Root Resistance Distance Distance Q,,

Analogously with the square-root shortest path distance d», Zhu and Klein [24]

defined the square-root resistance distance Q:
Qinli) = (QUHY" (6)

The square-rooted distances of Egs. (1) and (6) share with the usual Euclidean distances some

extra properties [25] beyond that of being a distance function.
The Quasi-Euclidean Distance p,,

Another fundamental graph metric, based on the Laplacian matrix L(G) and its

generalized inverse I'(G), is the quasi-Euclidean metric pge [24]:

pqs(i,j):{[rzlﬂ _erz]ij +[rz]”}m o

The generalized inverse matrix I'(1) of 1,2-dimethylcyclobutane gives the corresponding

quasi-Euclidean matrix pg(1):
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Po(1)

1 2 3 4 5 6
0.000 0913 1.358 1.541 1475 2023
0913 0.000 0.654 0842 0771 1475
1.358 0.654 0.000 0.586 0.842 1.541
1.541 0.842 0.586 0.000 0.654 1.358
1475 0771 0.842 0.654 0.000 0913
2023 1475 1541 1358 0913 0.000

N B W -

Similarly, for norbornane 2 the I'(2) matrix gives the quasi-Euclidean matrix pq(2):

Pq:(2)
1 2 3 4 5 6 7
0000 0.656 0822 0.670 0822 0.656 0.571
0.656 0.000 0579 0.822 1.107 1.054 0.893
0.822 0579 0.000 0.656 1054 1.107 0.893
0.670 0.822 0.656 0.000 0.656 0822 0571
0.822 1.107 1054 0.656 0.000 0.579 0.893
0656 1054 1.107 0822 0579 0000 0.893
0.571 0.893 0.893 0.571 0.893 0.893 0.000

PRI NEV R SRS g

DISSIMILARITY FUNCTIONS BETWEEN MOLECULAR DISTANCES

In order to compute the similarity/dissimilarity of graph and Euclidean (3D) distances,
we use three distance functions, i.e. the arc-cosine coefficient AC, the power-covering distance
measure A [39], and mean-power distance measure A,. Because the scope of our investigation
is to measure the similarity/dissimilarity of graph and Euclidean distances for the same
molecule, each compound A with N non-hydrogen atoms is represented by a vector of
interatomic distances X = X(A) = (x;, X3, X3, ..., X»), where n = N(N-1)/2; as is usual in
molecular graph theory, only non-hydrogen atoms are included in the graph. The comparisons
between such n-sequences X(A) are to be made so that the comparisons do not depend on
rescalings, i.e., X(4) and the n-sequences sX(A) with i-th element sx; are to be treated as
equivalent, for any positive scale factor s. That is, we focus on aspects of “shape” rather than
scale (as especially is appropriate when the different distance functions to be compared might

measure distances in different “units™).
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Arc-Cosine Metric AC

The cosine coefficient C for the similarity between two distance functions X and Y for
molecule A is given by:

3 X(A),Y(A4),
C(X,Y,A)= =L (8)

172 172
[Exm}?] x[z Y(A)?]

with the property —1 < C < 1. The cosine coefficient measures the deviation of two datasets

from proportionality. The arc-cosine distance measure is
AC(X,Y,A) = arcos{C(X,Y,A)}

This is itself a metric on the scale equivalence classes of n-sequences (as X,(A), Xz(A),

Xx(4))-

Power-Covering Metric A,

The power-covering metric A, [39] computes the dissimilarity between two interatomic

distance vectors X and Y computed for structure A as:

A(X,Y, 4) = log M(&JXMX[MJ a
L X(a), i=lan

This also is a metric on the set of scale equivalence classes of n-sequences.

Mean-Power Metric A,

A similar distance measure is obtained by considering all ratios of the interatomic

distances from the vectors X(A) and Y(A):
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1 X(A) 18 Y(A)
A(X Y, A)=1 —) —L x| =) —~ 10
2( . Og{l:" = Y(A)[]X[n = X(A);]} ey

This is a semi-metric on the set of scale equivalence classes of n-sequences, but it pays more
attention to all the members of a sequence than does A; (which attends only to extreme ratios

of members being compared).

DISTANCE COMPARISONS FOR SINGLE CYCLES

As a first test we compare each of the five intrinsic graph distance functions to a
geometric distance for a cyclic graph inscribed as a regular polygon into a circle. Such a
polygon with N vertices represents a cycloalkane with N carbon atoms. However, for
cycloalkanes the comparison of graph distances with geometric distances is complicated by the
large flexibility of higher alkanes that results in the existence of many conformations. Since we
are mainly interested in a preliminary comparison between graph and geometric distances, we
have considered the much easier problem of the embedding of a polygon into a circle. All
computations were done for polygons having between 3 and 40 vertices. The plots of the AC
dissimilarity indices between the five graph distances (d, dip, Q, Q,z, and pg) and the
geometric distances between the vertices of a polygon embedded into a circle are presented in
Figure 1. For the shortest path distance 4 one can observe an even-odd dependency between
AC(4,3D) and N, For all five graph distances, their similarity with the geometric embedding
decreases when N increases. The highest similarity with the geometric embedding is exhibited
by the resistance distance Q followed by the quasi-Euclidean distance p,.. If we neglect the AC
values obtained for small N, the similarity with the geometric embedding decreases in the
following order: Q, pg, din, d, Q1. This ordering is apparent also from the average values for
the AC index: AC(d3D),, = 0.1194, AC(d\r,3D),, = 0.1035, AC(Q,3D),, = 0.0366,
AC(Q,,3D),, = 0.1750, AC(pq,3D),y = 0.0434. The AC values indicate that there is a
significant similarity between graph and geometric embedding distances (especially for the
cases of resistance distance and quasi-Euclidean distances), suggesting that the graph distance

functions are able to capture a significant amount from the structural information present in the
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geometric embedding of a polygon into a circle. All the AC-differences seem to approach finite

asymptotic values.
0.20 4 4
1
0.15 4
2
0.10 4
0.05 4 %
3
0.00 T T T T T ™ —

FIGURE 1. The AC index of dissimilarity between five graph distance
measures (d, 1; din, 2; Q, 3; Qin, 4; Pge, 5) and the distance in a
regular polygon, computed for 38 cycloalkanes Cy with N between 3
and 40.

In Figure 2 we present the plot of the power-covering distance indices A; computed for
the same regular polygon embedding into a circle.

3

0 T T T T T T

0 5 10 15 20 25 30 35 40

FIGURE 2. The A, index of dissimilarity between five graph distance
measures (d, 1; dip, 2; Q. 3; Qin, 4; pge, 5) and the distance in a
regular polygon, computed for 38 cycloalkanes Cy with N between 3
and 40.
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Similarly with the situation encountered in the previous computations, there is an even-
odd oscillation between the A(d,3D) and N. The overall similarity with the geometric
embedding decreases in the following order: Q, py, d, din, Qiz. Compared with AC, an
inversion occurs between d and d»: with the A, dissimilarity indices, d is more similar to the
geometric embedding than d,,. The average values for the A, index are: A (d,3D),. = 0.1738,
Ai(d12.3D),, = 0.3136, A (Q,3D),, = 0.0772, Ai(Q12,3D)s = 0.4184, Ai(pge,3D).y = 0.0944,
The differences A,(d,3D), A;(Q,3D), and A(p,,3D) all seem to approach finite asymptotic
values (namely log n/2, log 4/m, and = log 4/r, respectively). On the other hand the differences
A(dy2,3D) and A, (£22,3D) both seem to diverge (~ log N).

The plots of the mean-power distance indices A; (multiplied with 100) are presented in
Figure 3 for the same five graph distances. The even-odd oscillation for Ax(d,3D) is present but
less severe than for the AC and A, indices. The ordering of the five graph distances by A, is
identical with that induced by A, with the following average values: Ax(d,3D), = 0.7455,
Ay(d2,3D)y = 2.3803, Ay(Q,3D),, = 0.1615, Ax(Q1,3D)., = 4.1645, Ay(pye,3D),. = 0.2325.
The convergence vs. divergence for the five different distances seems to be much similar as for

Ay

Z 1
0 _——
0 5 10 15 20 25 30 35 40

FIGURE 3. The A; (x100) index of dissimilarity between five graph
distance measures (d, 1; din, 2; Q, 3; Q.n, 4; pge. 5) and the distance
in a regular polygon, computed for 38 cycloalkanes Cy with N
between 3 and 40.
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The conclusion of the plots from Figures 1-3 is that all five graph distances are highly
correlated with the geometric distances between vertices of a polygon embedded into a circle,
with the highest similarity exhibited by the resistance distance Q followed by the quasi-
Euclidean distance py. The square-rooted distance functions (d\» and Q) usually compare
the least favorably. These results suggest that in this particular case, the novel graph distances
Q and p, encapsulate a large portion of the variation of the Euclidean distance. Much of the
results for our three different comparators AC, A,, and A; are somewhat similar, so that in the

following we look only at one of these — namely the AC comparator.

DISTANCE COMPARISONS FOR POLYACENES AND POLYPHENACENES

The second comparison of the graph and Euclidean distances was performed for a set
of polyacenes (linear benzenoid hydrocarbons) and polyphenacenes (zigzag benzenoid
hydrocarbons). The geometries of the first 20 compounds from the two series of benzenoid
hydrocarbons were optimized with the MM+ force field from HyperChem 5 [40]. For our
purpose, the molecular mechanics results offer a good trade-off between reasonable molecular
geometries and a short computation time.

The plots of the AC dissimilarity indices between the five graph distances and the

Euclidean distances for the first 20 linear benzenoid hydrocarbons are presented in Figure 4.

0.3 q
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1
0 T T T T
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FIGURE 4. The AC index of dissimilarity between five graph distance
measures (d, 1; dip, 2, Q, 3; Qiz, 4, pge 5) and the geometric
distance, computed for the first 20 linear benzenoid hydrocarbons.



The trend exhibited by the higher benzenoid hydrocarbons indicates that the similarity between
graph and Euclidean distances decreases in the following order: d, Q, pq, dipn, ),.However,
for the first benzenoid hydrocarbons in this series, ie. benzene and naphthalene, Q and Py
have a higher similarity with the Euclidean distance than d; as the number of benzenoid rings
increases, d becomes more similar with the Euclidean distance than Q and p... The average AC
indices indicate that Q and d are very similar with the Euclidean distance: AC(d,3D), =
0.0540, AC(d2,3D)., = 0.2343, AC(Q,3D),, = 0.0459, AC(Q17,3D).y = 0.2608, AC(pge,3D)ar
=0.0985. All five comparisons to the Euclidean distances appear to approach finite asymptotic
values. Apparently the shortest-path and resistance distances both approach ever more closely
the Euclidean distance, the differences seemingly approaching zero as the number of benzenoid
rings becomes ever larger.

The same statistical analysis was performed for the first 20 zigzag benzenoid
hydrocarbons, and the results are presented in Figure 5. Because the first two molecules
(benzene and naphthalene) are identical in the two series of benzenoid hydrocarbons, the first
parts of Figures 4 and 5 are identical. The plots from Figure 5 indicate that the similarity
between the Euclidean distance and the graph distances d, Q, and p,, increases when the
number of benzenoid rings increases. The shortest-path distance d has the greatest correlation
with the Euclidean distance, as indicated also by the average values of AC: AC(d,3D)a =
0.0499, AC(d,2,3D),, = 0.2196, AC(£2,3D),, = 0.0655, AC(L2,3D),, = 0.2614, AC(pge,3D)av

= 0.1053. The asymptotic behaviors seem to mirror those for the polyacenes.

0.26

0.21 1

0.16 4

.11 4

0.06 1

001 T T T T
[l 5 10 15 20

FIGURE 5. The AC index of dissimilarity between five graph distance
measures (d, 1; din, 2: Q, 3; Qiz, 4 py, 5) and the geometric
distance, computed for the first 20 zigzag benzenoid hydrocarbons.
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The results presented in Figures 4 and 5 indicate that, at least for benzenoid
hydrocarbons, topological indices computed with the shortest-path distance d are remarkable
similar with topographical descriptors obtained from the Euclidean distance. Especially the
shortest-path and resistance distances seem ultimately to compare quite favorably with the

Euclidean distances.

INVERSE DISTANCE COMPARISONS FOR POLYACENES AND
POLYPHENACENES

Reciprocal graph distances were used with success in computing a large number of
topological indices that proved to be very useful in QSAR and QSPR models [2,4,17-22].
Therefore, it seems of interest to compare reciprocal graph distances with the reciprocal
Euclidean distance. The AC dissimilarity indices were computed for the same sets of 20 linear
and zigzag benzenoid hydrocarbons, giving the plots presented in Figures 6 and 7.

05 - s
4
0.4 5
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1
0.1 4 :7/____ 5
0 T T T T
0 5 10 15 20

FIGURE 6. The AC index of dissimilarity between five reciprocal
graph distance measures (@', 1; d\z”', 2, Q' 3; Q7" 4; pg ', 5) and
the reciprocal geometric distance, computed for the first 20 linear
benzenoid hydrocarbons.

For lincar benzenoids, the similarity between the reciprocal shortest-path and Euclidean
distances is almost constant irrespective of the number of benzenoid rings. The average values
of AC show that the highest similarity is obtained between Q ' and 3D™': AC(d'.3D '), =
01116, AC(d" 3D ™), = 02961, AC(Q ' 3D),, = 0.0897, AC(RQiz" 3D, = 0.3684,



AC(pg ',3D™),, = 0.3305. The results presented in Figure 6 show also that a high correlation
exists between @' and 3D, indicating that structural descriptors from these two molecular

distances are also highly intercorrelated.

03
4
0.4 5
2
0.3 1
0.2 4
1
0.1 4 3
0 T T T T
0 5 10 15 20

FIGURE 7. The AC index of dissimilarity between five reciprocal
graph distance measures (d ', 1;di,”", 2,2 ', 3; Q2 ', 4;pe ', 5) and
the reciprocal geometric distance, computed for the first 20 zigzag
benzenoid hydrocarbons.

A rather similar behavior is again obtained for the polyphenacenes, as one can see from
the plots from Figure 7. Especially the reciprocal shortest-path and resistance distances
compare well with reciprocal Euclidean distances, the differences (as measured by AC)
evidently approaching a finite value as the number of benzenoid rings increases, while it seems
there is a divergence for d\» ', Q2" and pe . The highest similarity with the reciprocal
Euclidean distance is obtained with the reciprocal resistance distance ™' and reciprocal
shortest-path distance d', respectively, while the remaining three reciprocal distance functions
have a much lower correlation with 3D™'. The average AC values for the reciprocal distances
of zigzag benzenoids are: AC(d',3D '), = 0.1186, AC(d,» '.3D ™)., = 0.2779, AC(Q',3D )
= 0.0977, AC(Q,.",3D™),, = 0.3568, AC(py',3D '), = 0.2837. While in comparing graph
distances to geometric distances d proved to be more similar to 3D than did €, the reverse

situation is found when comparing reciprocal distances.
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SQUARED INVERSE DISTANCE COMPARISONS FOR POLYACENES AND
POLYPHENACENES

An overview of the molecular graph descriptors indicates that distance functions are
the most largely used, with reciprocal distances gaining a wider acceptance in recent years.
Other modifications of the elements of the shortest-path distances were proposed in the
squared reciprocal distance matrix [41] or the distance-valency Dval matrix [29]. Since these
variants of graph distances deserve more consideration as sources of graph descriptors, we
have investigated the similarity between the five squared reciprocal graph distance measures
and the squared reciprocal Euclidean distance, using as benchmark the sets of 20 linear and
zigzag benzenoid hydrocarbons.

0.8 4 5
0.6 4
4
0.4 4 2
0.2 1 3
1
0 T T T T
0 5 10 15 20

FIGURE 8. The AC index of dissimilarity between five squared
reciprocal graph distance measures (d 2, 1; din”, 2: Q7 3: Qi 4;
qu, 5) and the squared reciprocal geometric distance, computed for
the first 20 linear benzenoid hydrocarbons.

The plots for linear benzenoids from Figure 8 show that, similarly with the results
obtained for reciprocal distances, the correlation between 4> and 3D is almost constant
irrespective of the number of benzenoid rings; the same observation can be made about the
correlation between % and 3D, The similarity between the squared reciprocal Euclidean
distance and the graph invariants 4 and Q7 is remarkable high, and decreases considerably

for din %, Qun, and py 2. The average AC values display the same trend: AC(d 23D %), =
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0.1366, AC(d\» 3D, = 0.3172, AC(Q73D7),, = 0.1425, AC(Q),"*,3D7),, = 0.4692,
AC(py 23D %), = 0.5966.

For the set of 20 zigzag benzenoids the AC dissimilarity indices between squared
reciprocal graph and Euclidean distances the plots are very similar with those obtained for

linear benzenoids, as can be seen from Figure 9.
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FIGURE 9. The AC index of dissimilarity between five squared
reciprocal graph distance measures (@7, 1; din”, 2, Q7% 3, Qi %, 4
P, 5) and the squared reciprocal geometric distance, computed for
the first 20 zigzag benzenoid hydrocarbons.

For higher zigzag benzenoids the similarity with the squared reciprocal Euclidean distance
decreases in the following order: d, Q. din, Qin. Py This ordering is apparent also from the
average values for the AC index: AC(d*,3D7),, = 0.1431, AC(dyn > 3D7%),, = 0.3156, ACEQ
23D%),, = 0.1497, AC(R,2 23D ), = 04711, AC(p,: 2,3D™),, = 0.4928. For the same set of
20 zigzag benzenoids we present in Figure 10 the plots of the mean-power distance indices 4;
(multiplied with 100), which exhibit a slightly different pattern compared with AC, as can be
seen also from the average values for the A; index: Ax(d™ 23D, = 1.5772, Ax(din 3D )0 =
17.8780, Ay *,3D7),, = 1.8573, Ax(Q1n 23D )., = 24.9879, Ag(pye 23D 7)., = 7.5222.
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FIGURE 10. The A; (x100) index of dissimilarity between five
squared reciprocal graph distance measures (47, 1; din %, 2; @77, 3;
Q27 4; pge , 5) and the squared reciprocal geometric distance,
computed for the first 20 zigzag benzenoid hydrocarbons.

DISTANCE COMPARISONS FOR THE 76 BENZENOIDS OF UP TO 6 RINGS

The final comparison of the graph and Euclidean distances was performed for the 76
benzenoid hydrocarbons of up to six benzenoid rings presented in Figure 11. This test set is
more divers than the previous ones, and can indicate if our earlier findings are more general or
represent only a particular situation encountered only for cycles and for linear and zigzag
benzenoids. The geometries of all 76 benzenoids were optimized with the MM+ force field
from HyperChem 5. Due to the presence of bay regions, some compounds from this set are not
planar, as indicated also by the final geometry obtained from the molecular mechanics
computations. On the other hand, all these compounds are rigid, and the problem of selecting
the global minimum conformer is avoided. In Table 1 we present the AC dissimilarity index
between five graph distance measures and the Euclidean distance, computed for the 76
benzenoids from Figure 11. These numbers exhibit the similarity with the Euclidean distance
decreases in the following order: d, Q, pq., din, 1. The similarity between the Euclidean

distance and the shortest-path and resistance distances is very high, as can be seen from the
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TABLE 1. The AC index of dissimilarity between five graph distance
measures and the geometric distance, computed for the 76 benzenoid
hydrocarbons from Figure 11

BH AC(d,3D) AC(di2,3D) ACKQ.3D) AC(Q15,3D) AC(pe3D)
3 0.1508 0.0750 0.0362 0.1479 0.0611
4 0.1131 0.1616 0.0694 0.2089 0.0915
5 0.0942 0.1823 0.0943 0.2259 0.1226
6 0.0910 0.2011 0.0703 0.2410 0.0992
7
8
9

0.0869 0.1731 0.1079 0.2178 0.1216

0.1080 0.1793 0.1425 0.2203 0.1807

0.0812 0.2052 0.0934 0.2475 0.1215
10 0.0792 0.2040 0.0883 0.2426 0.1223
1 0.0772 0.2223 0.0669 0.2577 0.1009
12 0.0963 0.1685 0.1012 0.2310 0.0968
13 0.0959 0.1836 0.1333 0.2270 0.1603
14 0.1665 0.1775 0.2177 0.2192 0.2604
15 0.0956 0.2026 0.1248 0.2396 0.1619
16 0.0698 0.2147 0.0901 0.2585 0.1180
17 0.0680 0.2117 0.0884 0.2517 0.1241
18 0.0713 0.2206 0.0849 0.2586 0.1189
19 0.0759 0.1905 0.0999 0.2303 0.1286
20 0.1097 0.1885 0.1451 0.2262 0.1837
21 0.0825 0.2008 0.1125 0.2355 0.1452
22 0.0685 0.2095 0.0844 0.2454 0.1250
23 0.0697 0.2204 0.0802 0.2549 0.1152
24 0.0677 0.2345 0.0628 0.2667 0.1011

25 0.0873 0.1806 0.1152 0.2331 0.1290
26 0.0871 0.1748 0.1211 0.2290 0.1356
27 0.0822 0.1964 0.1064 0.2491 0.1272
28 0.1007 0.1819 0.1451 0.2257 0.1689
29 0.0942 0.2137 0.1247 0.2429 0.1608
30 0.0958 0.1890 0.1322 0.2280 0.1591

3 0.1439 0.1921 0.1933 0.2328 0.2352
32 0.1604 0.1945 0.2016 0.2310 0.2431
33 0.1469 0.1886 0.2004 0.2328 0.2380
34 0.0853 0.2010 0.1205 0.2426 0.1570

35 0.0894 0.2182 0.1098 0.2507 0.1550
36 0.0903 0.2061 0.1202 0.2462 0.1491
37 0.0901 0.2009 0.1381 0.2460 0.1456
38 0.0604 0.2225 0.0857 0.2670 0.1150

39 0.0943 0.2029 0.1286 0.2410 0.1643
40 0.0753 0.1974 0.1110 0.2358 0.1494
41 0.0616 0.2227 0.0836 0.2629 0.1190
42 0.0622 0.2227 0.0822 0.2629 0.1146
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TABLE 1. (Continued)

43 0.0646 0.2316 0.0781 0.2665 0.1144
4 0.0829 0.2206 0.1086 0.2540 0.1410
45 0.0811 0.2021 0.1155 0.2418 0.1324
46 0.0685 0.1925 0.0949 0.2298 0.1274
47 0.1021 0.1814 0.1396 0.2212 0.1762
48 0.1015 0.1990 0.1275 0.2324 0.1738
49 0.0994 0.2006 0.1370 0.2400 0.1757
50 0.1909 0.1858 0.2365 0.2247 0.2766
51 0.1278 0.1795 0.1600 0.2155 0.2029
52 0.1385 0.1875 0.1827 0.2228 0.2122
53 0.0763 0.2174 0.1019 0.2496 0.1367
54 0.0838 0.1997 0.1159 0.2322 0.1497
55 0.0593 0.2182 0.0817 0.2556 0.1230
56 0.0621 0.2220 0.0811 0.2576 0.1162
57 0.0619 0.2181 0.0780 0.2509 0.1201
58 0.0644 0.2310 0.0764 0.2650 0.1154
59 0.0679 0.2102 0.0899 0.2454 0.1294
60 0.1054 0.2045 0.1376 0.2387 0.1690
61 0.0687 0.2169 0.0930 0.2479 0.1221
62 0.0628 0.2314 0.0731 0.2627 0.1088
63 0.0606 0.2419 0.0588 0.2715 0.1009
64 0.0818 0.1963 0.1229 0.2450 0.1226
65 0.0918 0.1872 0.1433 0.2355 0.1876
66 0.0718 0.2084 0.1070 0.2576 0.1446
67 0.0775 0.1870 0.1173 0.2360 0.1329
68 0.0790 0.1986 0.1137 0.2443 0.1318
69 0.0762 0.2021 0.1050 0.2453 0.1481
70 0.0937 0.1823 0.1409 0.2308 0.1716
71 0.0735 0.2160 0.1024 0.2652 0.1070
72 0.0935 0.1802 0.1510 0.2330 0.1704
73 0.0763 0.1981 0.1127 0.2404 0.1607
74 0.0903 0.1985 0.1369 0.2457 0.1789
75 0.0711 0.2081 0.1030 0.2593 0.1106
76 0.0716 0.2168 0.0981 0.2599 0.1414
77 0.0864 0.1736 0.1231 0.2381 0.1168
78 0.0832 0.1879 0.1098 0.2515 0.1020
Mean  0.0891 0.1996 0.1141 0.2411 0.1444

average AC values: AC(d,3D),. = 0.0891, AC(d:5,3D)., = 0.1996, AC(Q,3D),, = 0.1141,
AC(Q1,3D)ay = 0.2411, AC(pge,3D)ay = 0.1444. This finding is significant for the computation
of distance-based QSAR/QSPR structural descriptors, suggesting that either d or Q should
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make a viable substitution for the Euclidean distance in computing structural indices, at least

for rigid organic compounds.
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FIGURE 11. Benzenoid hydrocarbons used to measure the similarity of different distance
functions.
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CONCLUSIONS

The scope of this investigation was to compare the extent of similarity between five
intrinsic graph distance functions and the Euclidean distance for several sets of molecular
graphs. The comparisons to Euclidean distances of course depends upon the graph embedding,
and our chemically plausible selection considered only cases where the conformation can be
unambiguously determined: the embedding of a regular polygon into a circle, linear and zigzag
benzenoid hydrocarbons with up to 20 benzenoid rings, and all 76 benzenoids with up to six
rings. Due to the steric interactions between atoms situated in bay regions, some of the
benzenoids from the last set are not planar, as indicated also by the molecular mechanics
computations; however, they are rigid, and their three dimensional geometry can be uniquely
characterized.

Notably the square-root distance functions d,, and Q. are commonly the least closely
in agreement with the Euclidean distances. Of the remaining three, d, Q, and py, one or the
other may be better in different circumstances. Particularly the favorable comparison for d is in
consonance with an earlier suggestion [42]. Quite often it is the shortest-path graph distance d
which is most similar to the Euclidean distance, followed by the resistance distance and the
quasi-Euclidean distance. These results have a significant importance for QSAR and QSPR
models that use distance-based structural descriptors, indicating that the shortest-path distance
d or equally well the resistance distanceQ can substitute the Euclidean distance in computing

structural indices.

ACKNOWLEDGMENT

The authors acknowledge the financial support of this research by the Welch
Foundation of Houston, Texas.



1

2]

3]

[4]

(3]
(6]

M

8]

277

REFERENCES AND NOTES

O. Ivanciuc and A. T. Balaban, Graph Theory in Chemistry. In: The Encyclopedia of
Computational Chemistry, Eds.: P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger,
P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner. John Wiley & Sons, Chichester,
1998, pp. 1169-1190.

O. Ivanciuc and A. T. Balaban, The Graph Description of Chemical Structures. In:
Topological Indices and Related Descriptors in QSAR and QSPR, Eds.: J. Devillers and
A. T. Balaban. Gordon and Breach Science Publishers, The Netherlands, 1999, pp. 59-
167.

0. Ivanciuc, T. Ivanciuc, and A. T. Balaban, Vertex- and Edge-Weighted Molecular
Graphs and Derived Structural Descriptors. In: Topological Indices and Related
Descriptors in QSAR and QSPR, Eds.: J. Devillers and A. T. Balaban. Gordon and
Breach Science Publishers, The Netherlands, 1999, pp. 169-220.

0. Ivanciuc and T. Ivanciuc, Matrices and Structural Descriptors Computed from
Molecular Graph Distances. In: Topological Indices and Related Descriptors in QSAR
and QSPR, Eds.: J. Devillers and A. T. Balaban. Gordon and Breach Science Publishers,
The Netherlands, 1999, pp. 221-277.

M. V. Diudea and I. Gutman, Croat. Chem. Acta, 1998, 71, 21-51.

O. Ivanciuc, S. L. Taraviras, and D. Cabrol-Bass, J. Chem. Inf. Comput. Sci., 2000, 40,
126-134.

S. Taraviras, O. Ivanciuc, and D. Cabrol-Bass, J. Chem. Inf. Comput. Sci., 2000, 40,
1128-1146.

H. Wiener, J. Am. Chem. Soc., 1947, 69, 17-20.

[9] H. Wiener, J. Am. Chem. Soc., 1947, 69, 2636-2638.

[10] O. Ivanciuc, J. Chem. Inf. Comput. Sci., 2000, 40, 1412-1422.

[11] O. Ivanciuc, T. Ivanciuc, and M. V. Diudea, SAR QSAR Environ. Res., 1997, 7, 63-87.
[12] D.J. Klein, J. Math. Chem., 1995, 18, 321-348.

[13] D. J. Klein, L. Lukovits, and I. Gutman, J. Chem. Inf. Comput. Sci., 1995, 35, 50-52.
[14] H.-Y. Zhu, D. J. Klein, and 1. Lukovits, J. Chem. Inf. Comput. Sci., 1996, 36, 420-428.
[15] D. J. Klein, Commun. Math. Comput. Chem. (MATCH), 1997, 35, 7-27.

[16]) D. J. Klein and I. Gutman, J. Chem. Inf. Comput. Sci., 1999, 39, 534-536.

[17} O. Ivanciuc, Rev. Roum. Chim., 1989, 34, 1361-1368.

[18] T. S. Balaban, P. A. Filip, and O. Ivanciuc, J. Math. Chem., 1992, 11, 79-105.

[19] O. Ivanciuc, T.-S. Balaban, and A. T. Balaban, J. Math. Chem., 1993, 12, 309-318.



278

[20] M. V. Diudea, O. Ivanciuc, S. Nikoli¢, and N. Trinajstic, Commun. Math. Comput.
Chem. (MATCH), 1997, 35, 41-64.

[21] O. Ivanciuc, T. Ivanciuc, and A. T. Balaban, J. Chem. Inf. Comput. Sci., 1998, 38, 395-
401.

[22] O. lvanciuc, M. V. Diudea, and P. V. Khadikar, Ind. J. Chem., 1998, 37A, 574-585.

[23] D. J. Klein and M. Randié, J. Math. Chem., 1993, 12, 81-95.

[24] H.-Y. Zhu and D. J. Klein, J. Chem. Inf. Comput. Sci., 1996, 36, 1067-1075.

[25] D. ). Klein and H.-Y. Zhu, J. Math. Chem., 1998, 23, 179-195.

[26] D. Bonchev, A. T. Balaban, X. Liu, and D. I. Klein, Int. J. Quantum Chem., 1994,
50, 1-20.

[27] A. T. Balaban, X. Liu, D. J. Klein, D. Babi¢, T. G. Schmalz, W. A. Seitz, and M.
Randic, J. Chem. Inf. Comput. Sci., 1995, 35, 396-404.

[28] O. Ivanciuc and A. T. Balaban, Commun. Math. Comput. Chem. (MATCH), 1994, 30,
141-152.

[29] O. Ivanciuc, Rev. Roum. Chim., 1999, 44, 519-528.

[30] O. Ivanciuc, T. Ivanciuc, and A. T. Balaban, A C H - Model. Chem., 2000, 137, 57-82.

[31] A. T. Balaban, D. Mills, O. Ivanciuc, and S. C. Basak, Croat. Chem. Acta, 2000, 73,
923-941.

[32] M. Randi¢, Int. J. Quantum Chem.: Quantum Biol. Symp., 1988, 15, 201-208.

[33] B. Bogdanov, S. Nikoli¢, and N. Trinajsti¢, J. Math. Chem., 1989, 3, 299-309.

[34] S. Nikoli¢, N. Trinajsti¢, Z. Mihali¢, and S. Carter, Chem. Phys. Lert., 1991, 179, 21-28.

[35] Z. Mihali¢ and N. Trinajsti¢, J. Mol. Struct. (Theochem), 1991, 232, 65-78.

[36] M. V. Diudea, D. Horvath, and A. Graovac, J. Chem. Inf. Comput. Sci., 1995, 35, 129-
135.

[37] M. Randi¢, New J. Chem., 1995, 19, 781-791.

[38] O. Ivanciuc and A. T. Balaban, Rev. Roum. Chim., 1999, 44, 539-547.

[39] L. Bytautas, D. J. Klein, M. Randi¢, and T. Pisanski, DIMACS Ser. Discr. Math. Theor.
Comput. Sci., 2000, 51, 39-61.

[40] HyperChem 5, Hypercube, Inc., Florida Science and Technology Park, 1115 N.W. 4th
Street Gainesville, Florida 32601, U.S.A., www http://www.hyper.com.

[41] Z. Mihali¢ and N. Trinajsti¢, J. Chem. Educ., 1992, 69, 701-712.

[42] D.J. Klein, Int. J. Quantum Chem. Quantum Chem. Symp., 1986, 20, 153171,




