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REMARKS UPON AN ELEMENTARY PROBLEM IN STEPWISE
NETWORK CONSTRUCTION.

E.C. Kirby
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Abstract. The principles of a possible algorithm to convert a set of empty vertices into a 3-
valent network, by inserting one edge at a time, are outlined, but a serious practical problem is
pointed out as an open question; namely, are there reasonably simple conditions that will
ensure that every vertex in the set is incorporated into an arbitrary planar network with its
valency of three fully satisfied?

INTRODUCTION

Construction of large chemical molecules, whether in the literal sense pertaining to the
physical world of nature and synthetic chemical laboratories, or figuratively in the context of
diagrams and codes, is normally done in a planned and systematic way. Attempts are made to
build up the structure from chemical building blocks in accordance with a sequence of known
or suspected rules of chemical behaviour. There are, however, some structures or states that
arise from repeated operations of a very simple kind. Examples are polymerization reactions,
where in the presence of a catalyst small monomers assemble themselves into
macromolecules, and crystallization processes.

Here we think it interesting at least to consider the possibility of this happening in the
generation of fullerenes. These all carbon structures, consisting of boundless networks of 3-

valent carbon atoms closed upon themselves in 3-dimensional space have been made in
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various spheroidal,[1] tubular[2, 3] and possibly toroidal forms,[4-7] and much research is
active in this area. See references [8-28] for a small and arbitrary selection of recently
published papers.

So, suppose we want to think about accretion processes within a cloud of condensing
carbon vapour - a situation where fullerenes might well arise. The behaviour of such a system
can be simulated, albeit in oversimplified form, by the process of edge addition to a disjoint
graph that starts simply as a set of unconnected vertices. Here, however, we are not much
concerned with discussing the results in detail. We wish merely to point out a problem with
this approach - which in itself is of some interest

The task is this: Given a set of vertices representing atoms, to introduce edges to
produce a connected network, but one that everywhere is locally planar, not one that is
‘tangled up’. Then, how can we ensure that a connected graph of a specified size and genus is

produced?

METHODS

The Planarity of The Network.

To ensure local planarity it is best to specify that a bond/edge can be inserted between
two vertices only when are near neighbours (and this is a reasonable assumption for chemical
interaction anyway). Since we start with unconnected vertices, this immediately implies that
we are not dealing with a purely graph-theoretical problem, but one that also has geometric
aspects. An assembly of three-valent carbon prefers to be planar, and as we wish to model
such a network, we will simplify the starting conditions by assuming that all vertices are
coplanar.

We can now simplify further by assuming that the vertices form a regularly spaced
array. The erratic variation of geometric distance by thermal motion may very simply be
mimicked by conducting edge formation in a partially or wholly erratic sequence. Horizontal
rows of vertices may be set to have aligned or staggered vertical columns, the former being
somewhat simpler to deal with. Every vertex will thus have up to eight neighbouring vertices
in its immediately surrounding 'shell’' (Figure 1a). If we set two rules,

1. Vertex i may bond to vertex j only if j belongs to the 'shell' of i., and
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2. Vertex j may be at any of the eight shell positions, but both 7 and j must be of no more than
degree-2, and no crossing of a previously made bond is allowed (see Figure 1b),

these will ensure that, locally, the network is always planar.

Figure 1. Possible starting graphs for network construction.*
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*a) Two arrays of empty vertices used as described to start construction of a network and (b)
a vertex and its shell of labelled neighbours. Subject to a maximum valency of three, this
vertex can connect Lo any vertex 1-8, provided that the connection does not cross an existing

edge.

The Overall Topology

Often it is convenient to predefine this, and this can be done by giving attention to
vertices on the perimeter first. The only practical difference between a finite, geometrically
planar network and a polyhedron is that in the latter all faces are of roughly comparable size,
whereas a planar sheet will usually have one (forming the perimeter) which is significantly
larger than all the others. It follows that if an enclosing ring of appropriate size, say five, six
or seven vertices is drawn, and all other rings are of a approximately similar size, then a
polyhedron is guaranteed. (See figure 3a)

Ensuring a toroidal structure (genus 1) is slightly more complicated. Here the
enclosing ring of perimeter vertices should be partitioned into four, and alternate opposite
pairs connected across the vertex-populated space in apparent violation of rule | above, as
shown in figure 3b. This is only an apparent violation because, when these vertex pairs are

treated as if on the face of a torus, they are in fact near neighbours of each other. For a Klein
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bottle, one pair of opposite sides can then be paired in reverse order. These 'round-the-tube'
connections can of course be made after creating the main network, by insertion.
Figure 2. Examples of edge sets installed to guide the network toward particular

topologies*
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*For, in this case (a) a polyhedron, and (b) a torus. Dotted lines show connections that are
recorded, but which can be crossed - because in a conventional 3D realization they would not

be in same plane as the empty vertices shown.

The next stage is to populate the enclosed area with unconnected vertices, and then

install connections as described earlier.
THE PROBLEM

Everything described up to now is comparatively simple to incorporate into an
algorithm, which can use random methods, or some additional, more systematic, set of rules.
So what is the problem with this approach? It lies in the difficulty of incorporating all the
vertices into the connected 3-valent network. Figure 3 exemplifies a common aberration,
where a single (degree-0) vertex becomes isolated, because it is surrounded by vertices that
already are all of degree-3. The same thing can happen to a degree-1 or degree-2 vertex, or
indeed to a whole substructure. If, on the other hand, one relaxes the connection rules, the
clear assurance of planarity is easily lost. It should be noted that marooning of degree-0
vertices is a problem only for graph-theoretical construction. In a real assembly of reacting
carbon atoms it would probably be irrelevant (assuming that none became trapped within a
cage). On the other hand, the 'locking in' of degree-1 or degree-2 vertices as part of the

network itself, is a potential problem in both cases.
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DISCUSSION

It seems to be an open question as to whether there is any rule set of reasonable
simplicity which reconciles these requirements, i.e. to generate a cubic network of specified
size, by sequential edge installation, that everywhere is locally planar.

This problem is strongly reminiscent of how error prone is the task of finding a
Hamiltonian path by tracing through a polycyclic network where, again, it is all too easy to
reach a situation where completion is impossible.[29, 30] Another related practical difficulty
is that it is very easy to set a lower limit on the size of ring allowed, by designing a test that
refuses to accept a connection creating such a ring, but much more difficult to set an upper

bound.

Figure 3. The problem of 'marooning'.*
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*The ringed vertex shown cannot, under the rules set, be connected to any of its neighbours
because their valencies are already saturated. Besides empty vertices, the same situation can
occur with any vertex of degree<3, and for a disjoint subgraph.

These remarks do not of course invalidate the procedure as a method of obtaining a
structure of the required topology and connectivity, but they do mean that the size of the
system is unpredictable. (Although, with random edge installation, statistical estimates may
be made). [t is a simple matter to finish off an incomplete network by pruning, i.e. by deleting

zero-, one- and two-valent vertices, and deleting or reassigning their bonds (Figure 4).
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Figure 4. An example of polyhedron formation.*
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*(a) In this case an outer hexagon has been connected inwards to an array of free vertices. (b)
Edges have been installed, but free vertices remain. Note that some of these could be
connected were the operation continued further, while some are now locked into the disjoint
state. (c) Free vertices have been deleted. (d) Finally, all vertices below degree-3 are
eliminated by pruning and contraction to give a polyhedron with 46 vertices and 25 faces,

varying in size from 4 to 8.

One partial solution to this problem of ‘'vertex marooning' is to start from a
Hamiltonian path or cycle, and then to add cross connections to form the faces. Care must still
be taken, but mistakes are less easily made. However, the Hamiltonian problem is itself a
difficult one.

Thus far we have described the insertion of edges only. Results are much more
predictable if insertions of simple graph fragments, such as K2 and the trimethyl graph

between edges are allowed, and this process is studied in more detail elsewhere.[31]
CONCLUSIONS
So far there is no ideal sequential method of construction. These simple methods

which start by edge insertion between vertex pairs are very convenient for use in an

algorithm, but, as currently formulated do not allow exact sizes to be made reliably.
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We pose as a practical open question whether an array of empty vertices can
efficiently and reliably be converted to an arbitrary locally planar cubic network in stepwise

fashion using all the vertices.
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