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REMARKS UPON AN ELEMENTARY PROBLEM IN STEPWISE
NETWORK CONSTRUCTION.

E.C. Kirby
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14 Lower Quakfield, Pitlochry, Perthshire PH16 5DS, Scotland UK

Abstract. The principles of a possible algorithm to convert a set of empty vertices into a 3-
valent network, by inserting one edge at a time, are outlined, but a serious practical problem is
pointed out as an open question; namely, are there reasonably simple conditions that will
ensure that every vertex in the set is incorporated into an arbitrary planar network with its
valency of three fully satisfied?

INTRODUCTION

Construction of large chemical molecules, whether in the literal sense pertaining to the
physical world of nature and synthetic chemical laboratories, or figuratively in the context of
diagrams and codes, is normally done in a planned and systematic way. Attempts are made to
build up the structure from chemical building blocks in accordance with a sequence of known
or suspected rules of chemical behaviour. There are, however, some structures or states that
arise from repeated operations of a very simple kind. Examples are polymerization reactions,
where in the presence of a catalyst small monomers assemble themselves into
macromolecules, and crystallization processes.

Here we think it interesting at least to consider the possibility of this happening in the
generation of fullerenes. These all carbon structures, consisting of boundless networks of 3-

valent carbon atoms closed upon themselves in 3-dimensional space have been made in
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various spheroidal,[1] tubular[2, 3] and possibly toroidal forms,[4-7] and much research is
active in this area. See references [8-28] for a small and arbitrary selection of recently
published papers.

So, suppose we want to think about accretion processes within a cloud of condensing
carbon vapour - a situation where fullerenes might well arise. The behaviour of such a system
can be simulated, albeit in oversimplified form, by the process of edge addition to a disjoint
graph that starts simply as a set of unconnected vertices. Here, however, we are not much
concerned with discussing the results in detail. We wish merely to point out a problem with
this approach - which in itself is of some interest

The task is this: Given a set of vertices representing atoms, to introduce edges to
produce a connected network, but one that everywhere is locally planar, not one that is
‘tangled up’. Then, how can we ensure that a connected graph of a specified size and genus is

produced?

METHODS

The Planarity of The Network.

To ensure local planarity it is best to specify that a bond/edge can be inserted between
two vertices only when are near neighbours (and this is a reasonable assumption for chemical
interaction anyway). Since we start with unconnected vertices, this immediately implies that
we are not dealing with a purely graph-theoretical problem, but one that also has geometric
aspects. An assembly of three-valent carbon prefers to be planar, and as we wish to model
such a network, we will simplify the starting conditions by assuming that all vertices are
coplanar.

We can now simplify further by assuming that the vertices form a regularly spaced
array. The erratic variation of geometric distance by thermal motion may very simply be
mimicked by conducting edge formation in a partially or wholly erratic sequence. Horizontal
rows of vertices may be set to have aligned or staggered vertical columns, the former being
somewhat simpler to deal with. Every vertex will thus have up to eight neighbouring vertices
in its immediately surrounding 'shell’' (Figure 1a). If we set two rules,

1. Vertex i may bond to vertex j only if j belongs to the 'shell' of i., and
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2. Vertex j may be at any of the eight shell positions, but both 7 and j must be of no more than
degree-2, and no crossing of a previously made bond is allowed (see Figure 1b),

these will ensure that, locally, the network is always planar.

Figure 1. Possible starting graphs for network construction.*
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*a) Two arrays of empty vertices used as described to start construction of a network and (b)
a vertex and its shell of labelled neighbours. Subject to a maximum valency of three, this
vertex can connect Lo any vertex 1-8, provided that the connection does not cross an existing

edge.

The Overall Topology

Often it is convenient to predefine this, and this can be done by giving attention to
vertices on the perimeter first. The only practical difference between a finite, geometrically
planar network and a polyhedron is that in the latter all faces are of roughly comparable size,
whereas a planar sheet will usually have one (forming the perimeter) which is significantly
larger than all the others. It follows that if an enclosing ring of appropriate size, say five, six
or seven vertices is drawn, and all other rings are of a approximately similar size, then a
polyhedron is guaranteed. (See figure 3a)

Ensuring a toroidal structure (genus 1) is slightly more complicated. Here the
enclosing ring of perimeter vertices should be partitioned into four, and alternate opposite
pairs connected across the vertex-populated space in apparent violation of rule | above, as
shown in figure 3b. This is only an apparent violation because, when these vertex pairs are

treated as if on the face of a torus, they are in fact near neighbours of each other. For a Klein


















