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Abstract. The path layer matrix of a weighted graph G counts the numbers of paths with
given length coming from vertices of G . If I, <1, <...<{, are all possible lengths of paths in
G, then the entry (i, j) of this matrix is the number of simple paths having initial vertex v,
and length /;. This matrix and derived topological indices can be applied for establishing the
similarity of molecular graphs. Examples of graphs without cut-vertices having the same path
layer matrices are presented,

INTRODUCTION

Matrices associated with graphs are important tools for designing and computing topo-
logical indices of molecular graphs. Some of these matrices naturally arise from considering
distances between vertices of a graph. The most well-known distances are based on the short-
est or longest paths in a graph. Among matrices of this kind we point out the distance matrix,
the detour matrix and the (distance) layer matrix. More specific matrices are the path layer

matrix, the Wiener matrix, the Cluj matrix, etc.
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FIGURE 1. Path layer matrix for a simple graph.

Dedicated to Professor A. T. Balaban for his 70" aniversary.
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The path layer matrix was introduced for a simple graph with the standard metric. De-
note by p(G) the order of a graph G , i. e., the number its vertices. The parh layer matrix of
a graph G is the matrix 7(G)=|r,[, i=12,..., p(G) and j=12,..., p(G) -1, where 7, is
the number of all simple paths with initial vertex v, that have length j. By ordering the rows
of 7(G) with respect to the decrease of their length (the number of the last nonzero element)
and then by lexicographically arranging the rows with the same length, one can obtain a ca-
nonical form of 7(G). An example of canonical path layer matrix for a simple graph is shown
in Fig. 1.

The path layer matrix also known as the path degree sequence of a graph or the atomic
path code of a molecule [1, 2]. This matrix and derived invariants have found interesting ap-
plications in chemistry for characterization of branching in molecules, for establishing simi-
larity of molecular graphs, and for drug design [1-5]. For trees a path layer matrix coincides
with a layer matrix (or distance degree sequence [2]), since any two vertices in a tree are con-
nected by a unique path. Mathematical investigations of this matrix deal with finding a pair of
nonisomorphic graphs having some specified property such that both graphs have the same
matrix [2, 6-12]. Among these properties we point out the girth, cyclomatic number and pla-
narity of graphs. If such a pair exists, then it is interesting to determine the least order possible
for these graphs. In [1] it is asserted that an equality of the path layer matrices for graphs of
order p <11 is a sufficient condition for their isomorphism. The following problem was pro-
posed by Quintas and Slater in [6]: does there exist a pair of connected nonisomorphic r-
regular graphs having the same path degree sequences (if the answer is yes, then for each
r >3, what is the least order p(r) possible for graphs in such a pair)?

Balaban et al. presented the first example of such cubic graphs of order 142 [13]. For
every r >3, r-regular graphs with this property have been constructed in [14]. The order of
the graphs is a linear function in r (p(3)<116 and p(4)<114). The upper bound for the
order of cubic graphs has been improved in [15] (p(3) £62). The key feature of all similar
graphs is that they contain cut-vertices. For a long time, intensive investigations have failed to
produce even one pair of nonisomorphic graphs without cut-vertices that have the same path
layer matrix. The following question was formulated in [15]: does there exist a pair of noni-
somorphic ( r-regular) graphs without cut-vertices having the same path layer matrix? Exam-

ples of simple 2-connected graphs have been reported in [16] and several families of 2- and 3-
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connected graphs with this property have been presented in [17]. In the present paper this ap-
proach will be expanded for weighted graphs.

DEFINITIONS
A simple graph G(V,E) is called a weighted graph if each edge e is assigned a non-
negative real number w(e), called the weight of e. An unweighted graph can be regarded as
a weighted graph in which each edge e is assigned weight w(e) =1. Let P be a simple path
of a graph. Then the length of this path, /(P), is defined by the following equality:
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FIGURE 2. Path layer matrix for an weighted graph.

Let [, <1, <...<l, be all possible lengths of simple paths in G . The path layer ma-
irix of a weighted graph G is the matrix #w(G) =|ow, |, i=12,...,p(G) and j=12.....n,
where 7w, is the number of simple paths with initial vertex v, that have length /,. A canoni-
cal form of 2w is the same as for 7. The weighted graph G and its matrix 2w(G) is depicted

in Fig. 2. It is clear that if w(e) is a constant for all edges then w(G) = w(e)7(G). The num-

ber of mutually distinct lengths in a weighted graph can be very large in real applications. In
order to reduce the number of matrix's columns, we can define an equivalence relation on

paths or consider paths of bounded length.
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STRUCTURAL SIMILARITY OF GRAPHS
Because the matrix aw(G) takes into account weights of graph's edges, it more pre-
cisely reflects chemical features of the corresponding structure than the matrix 7(G). In order

to illustrate the use of path layer matrix for establishing similarity among weighted graphs, we
consider molecular graphs of antihistamines diagrammed in Fig. 3 [18). Every graph G,

i=12,...,10, is represented by a sequence A(G,)= A =(a,,a,,...,a,), where a; is a half-
sum of the j-th column of 7(G,) or w(G,) and n being determined by the longest path

among all graphs. This sequence is also known as the path length distribution of a graph.
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FIGURE 3. Molecular graphs of antihistamines.

At first, skeletons of these graphs will be processed. Path length distributions for the
unweighted molecular graphs are collected in Table 1 (the longest path has length 20).
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A measure of similarity follows from the count of differences in the number of paths

of distinct length in the structures considered. Every sequence can be regarded as a vector in

n-dimensional Euclidean space. Those vectors are similar which lie in the same region of the

space. As a measure of similarity, we take the distance between two points A and B defined

by two sequences:

D(A,B)=(a, ~b,) +(a, b)) +...+(a, - b,)" .

TABLE 1. Path length distributions for skeletons of molecular graphs of Fig. 3.

1 234 5 6 7 8 910 112 13 14 1516 17 18 19 20
A =(23, 31,40, 52, 68, 66, 76, 76, 64, 56, 40, 12, 0, 0, 0, 0, 0, 0, 0, 0
A =(23, 31,40, 52, 68, 66, 76, 76, 64, 56, 40, 12, 0, 0, 0, 0. 0, 0, 0, O)
A, =(23, 31,40, 52, 68. 66, 76, 76, 64, 56, 40, 12, 0, 0, 0,0, 0,0, 0, 0
A, =(23, 30,38, 48, 62, 56, 62, 68, 64, 52, 40, 28, 8 0, 0,0 0,0 0,0
A =(24, 32,41, 53, 68, 72, 78, 80, 72, 62, 50, 28, 8 0, 0,0 0,0 0 0
A =(21, 28,31, 38, 45, 42, 48, 44,36, 28, 20, 4 0, 0, 0,0 0 0 0 0
A =(21, 28,35, 42, 49, 46, 48, 40,32, 24, 16, 4, 0, 0, 0, 0. 0, 0, 0, O)
A, =(25, 35,49, 68, 94, 105, 122, 140, 146, 144, 124, 114, 100, 91, 72, 56, 40,32, 24, 8)
A, =(28, 40,55, 75,103, 121, 145, 170, 186, 189, 173,155, 136, 128, 105, 98, 62, 56, 44, 30)
A =(24,34,45,61, 82, 97,107,117, 123,125, 94, 76, 68, 58, 32,17,14, 7, 2, 0)

A, =(27,41, 64,97, 144, 174, 218, 248, 274, 262, 246, 200, 174

, 140, 84, 40,32, 24,8, 0)

The following distance matrix D, contains rounded distances between all unweighted

structures shown in Fig. 3:
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To find groups of similar structures, the taxonomy algorithm and the corresponding
computer program were used [19, 20]. All structures have been divided into two taxons
T, ={1,2,3,4,5,6} and T, ={7,8,9,10}. It should be noted that these groups can be recog-
nized by inspecting the path length distributions. The structures of the second group have
many long paths.

Consider now the weighted molecular graphs. We shall use the standard lengths of
chemical bonds, i. e., 0.154 for the bond C —C, 0.143 for C -0, 0.122 for C =N, etc. Let
P, and P, be two paths with lengths [, </, coming from the same vertex. In order to reduce
the number of all different lengths, it is assumed that if /, -/, <& then P, and P, are equiva-
lent and have equal length /. At first, a common table of all different lengths for all struc-
tures is defined. Then the path layer matrices and path length distributions are calculated for
all graphs. Table 2 contains a part of path length distributions of structures shown in Fig. 3.
The number of all distinct lengths is equal to 130 for & =0.01 and the longest path has length
2.94.

TABLE 2. Path length distributions for molecular graphs of Fig. 3.

A2 .13 .15 .18 28 .29 .31 33 41 42 44 46 56 .57 .58

A =(1, 6, 15 1, 3, 18 9, 1, 2, 8 22 8 5 20, 5 ..
A, =0, 6 16, 1, 0, 20, 10, I, 0, 6, 28 6, 0, 19, 4, ..
A, =(0, 8 15, 0, 0, 22, 8 0, 0, 8 24 6, 0, 18, 11,..
A, =0, 6, 17, 1, 0, 17, 14, 1, 0, 6, 18,17, 0, 15 0O, ..
A =0, 8 13, 0, 0, 24, 4, 0, 0, 8 21, 2, 0, 18 11, ..
A =(, 8 13, 0, 0 22, 6 0 0 8 23 4 0, 18, 11, ..
A =, 8 17, 0, 0, 25 10, 0, 0O, 10, 33, 6 0, 35 2 ..
A =2, 7, 18, 1, 5 22, 12, 1, 4,10, 33, 8, 6 33 S5 ..
A, =(1, 6 16, 1, 5 20, 8 1, 3,12, 26, 4, 4, 36, 5, ..
A,=(0, 6, 21, 0, 0 22 19, 0, 0, 6, 41,17, 0, 22, 5

Rounded distances between all structures form the matrix D, (path length distribu-

tions were used without truncating):
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Using the taxonomy program, the following four taxons have been obtained:
T,={,23,4}, T, ={5,6}, 7,={7,8,9} and T, ={10}. Comparing the above results of

taxonomy based on the matrices 7 and ow, we can conclude that the use of 7w has allowed
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to distinguish structural similarity of molecular graphs more precisely.

A computer program for calculating the matrix 2w has been developed. Its control pa-
rameters include type of weights (unit, integer or chemical), maximal difference between

lengths of equivalent paths, restrictions on the longest path with respect of length or/and the

number of edges.
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GRAPHS WITH THE SAME PATH LAYER MATRIX

Consider a weighted graph 7 with three chosen vertices @, b and ¢ shown in

Fig. 4a. The graph T is said to be admissible if its automorphism group, Aut(T), satisfies the

following conditions:

I

FIGURE 4. Admissible graphs and main construction.
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(a) there are automorphisms that cyclically interchange vertices @, b and ¢ in the
graph T (@ > b—c—a),i e, Au(T) contains the cyclic subgroup of order 3;

(b) there are no automorphisms fixing the vertex a and interchanging vertices b and
c,i.e., Aut(T) does not contain the dihedral subgroup.

An example of an admissible graph is depicted in Fig. 4b (w, # w, ).

Let T,, T, be admissible graphs and H, F be arbitrary weighted graphs. Let graphs
G, and G, be obtained from these graphs as shown in Fig. 4c (copies of H are attached with
T, and T, by the same way).

THEOREM. Graphs G, and G, are not isomorphic and t(G,) = ™m(G,).

It is not hard to verify that conditions (a) and (b) imply nonisomorphism between G,
and G, . Denote by 2w, (v) the row of 7w(G) corresponding to the vertex ve V(G).

The proof of the theorem is similar as for the case of simple graphs and it is based on
the condition (a) and the structure of graphs G, and G, [17]). This result is proven by
constructing two bijection:

1) ¢:V(G,) > V(G,) such that 7w, (v) = o, ((v)):

2) f 8 (v) >, , where @, (v) is the set of all simple paths of fixed length begin-

ning at the vertex v in G . For details see [17].

£ £ A oy

FIGURE 5. Admissible graphs for constructing regular graphs.
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In order to construct graphs with given properties and the same path layer matrices, it
suffices to select suitable graphs 7,, T, and H, F. In the simplest case, 7, =7, and
H=F =P, where P, is the path with two vertices. Now we recall some results and open
questions for unweighted graphs of small degree.

PROPOSITION 1 [17]. For every p 218, there are nonisomorphic graphs of order
p having the same path layer matrices.

Graphs of order 18 are constructed from admissible graphs T on 9 vertices shown in
Fig. 5a-d. Additional properties of T provide the corresponding properties of the obtained
graphs: 2- or 3-connectedness, planarity or nonplanarity. It should be noted that the resulting
graphs have not cut-vertices. To find minimal graphs, we have to answer on the following
question.

QUESTION 1 [17]. Does there exist a pair of graphs of order p, 12< p <17, hav-
ing the same path layer matrices ?

It is known that cubic graphs are of great interest in chemistry and graph theory. For
this class of graphs we have the following:

PROPOSITION 2 [17]. For every even p 230 (p 226), there are nonisomorphic
planar (nonplanar) cubic graphs of order p having the same path layer matrices.

3-connected planar cubic graphs of order 30 (of order 26 for nonplanar graphs) can be
constructed from the admissible graphs T on 15 and 13 vertices depicted in Fig. 5e,f. To seek
minimal cubic graphs, we should examine only three families of graphs.

QUESTION 2 [17]. Does there exist a pair of cubic graphs of order p =20,22,24
having the same path layer matrices ?

Simple regular graphs of degree 4 as well as cubic graphs include melecular graphs of
many important classes of chemical compounds.

PROPOSITION 3 [17]. For every p 251 ( p234), there are nonisomorphic planar
(nonplanar) 4-regular graphs of order p having the same path layer matrices.

The corresponding admissible graphs T are shown in Fig. 5g,h.

QUESTION 3 [18]. Does there exist a pair of 4-regular planar (nonplanar) graphs of
order p <50 ( p <33), having the same path layer matrices

It seems that the minimal weighted graph having properties (a) and (b} is depicted in
Fig. 4b. The molecular graph of benzene is the minimal example of an admissible multigraph



T (see Fig. 6). A pair of minimal multigraphs with the same path layer matrices is shown in
Fig. 7. More complicated multigraphs are presented in Fig. 8. This implies the following
PROPOSITION 4. For every p =212, there are nonisomorphic planar weighted

graphs (multigraphs) of order p having the same path layer matrices.

f-0 & O

FIGURE 6. Examples of admissible molecular graphs.

FIGURE 7. Minimal multigraphs with the same path layer matrix.

FIGURE 8. Example of molecular graphs.

It is interesting to discover a pair of weighted graphs of such kind with small number

of vertices (with or without cut-vertices).
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QUESTION 4. Does there exist a pair of weighted graphs of order p <11 having the

same path layer matrices ?
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