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Abstract  Construction of polyhex and other tiled tori starting from square-like tori is
presented. Leapfrog transformation of both linear and angular polyhex isomers is discussed
and illustrated. Molecular mechanics and semi empirical calculations emphasize toranes
(alkanes-like hydrocarbons) rather torenes (alkenes-like or arenes-like molecules) as plausible
candidates to the real molecule status.

INTRODUCTION

Fullerene chemistry is nowadays a well-established field of both theoretical and
experimental investigations. The initial fascinating appeal, coming from their beautiful
symmetry [1-3] shifted later to real chemistry. [4-6] Carbon allotropes with finite molecular
cage structures have been functionalized or inserted in supramolecular assemblies. [7-9]

Since a spherical surface cannot be tiled by pure hexagonal pattern, [10,11) the
scientists looked for other surfaces capable to allow a full polyhex tessellation. Such surfaces
are cylinders (e.g., open nanotubes) and tori, [12-20] both of them identified in the products of
laser irradiation of graphite. [21,22] According to Euler’s formula: v—e + f=2-2g (v,e. f. g
being respectively the number of vertices, number of edges, number of faces, and genus) a

torus is of genus one while a sphere or a cylinder are of genus zero. Formula is useful for
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checking the consistency of an assumed structure.
This paper describes a novel way of generating polyhex tori, starting from
quadrilateral tessellated tori. Leapfrog transformation along with the energetic

characterization of some classes of tori is presented.

CONSTRUCTION OF POLYHEX TORI

Covering a toroidal surface by hexagons is related to the tessellation of an equivalent
planar parallelogram. [11, 16,18] The resulting polyhex lattice is completely defined by four
independent integer parameters, reducible to three parameters: [19] a torus T g, is obtained
from p x g hexagons stacked in a p x g-parallelogram, whose opposite edges are glued in
order to form a tube. Next, the two ends of the tube are glued together, eventually rotated by ¢
hexagons before gluing, to form the torus.

An alternative to the parallelogram procedure is the use of adjacency matrix eigenvectors
in finding appropriate triplets, i.e., 3D coordinates of a graph (in particular, a torus). [23] The
method was previously used in generating spheroidal fullerenes. [24,25]

Our construction starts from a quadrilateral net embedded on the toroidal surface,
generated according to an elementary geometry (see our previous work [26]). A torus T, pisa
lattice obtained by circulating a ¢-membered cycle along another cycle: its n images together
with the edges joining (point by point) the subsequent images form a polyhedral torus tiled by
some square patterns. The problem is to change the quadrilaterals into hexagons or other tiling
patters, suitable from chemical point of view. In this respect, we developed several cutting

procedures.

Standard C, cutting.

A cutting operation consists of deleting appropriate edges in a square-like net in order
to produce some larger polygonal faces. By deleting each second horizontal edge and
alternating edges and cuts in each second row it results in a standard k,Cs pattern (Figure 1,
a).
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Standard h,Cs pattern Standard v,Cs pattern

@~ B s W@ N

FIGURE 1. Standard Cg patterns and their optimized forms.

After optimizing by a molecular mechanics program, phenanthrenoid, hexagonal
pattern appears on the torus. Figure 2 illustrates an idealized polyhex torus. However, after

optimization, the surface becomes flattened (see below).

FIGURE 2. Ty 40,c (idealized): (a) side view; (b) top view,
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By following the same algorithm as above, but operating vertically, a standard v,C¢
pattern (Figure 1, b) is generated. It means that after optimization an anthracenoid isomeric
pattern is obtained.

Note that each hexagon consumes exactly two squares in the square-like net. By
construction, the number of hexagons in the h.Cs patrern is half the number of squares on
dimension ¢ of the torus Tg, while in the v,Cq pattern the reduced number of hexagons
appears on dimension n. Recall that, the above cutting procedure leaves unchanged the
number of vertices in the original square-like torus.

The name of a polyhex torus, thus generated, has to remind the rype of cutting, k or v,

as well as the cycle membering.

OTHER PATTERN CONSTRUCTIONS

In tessellating a toroidal surface, some other patterns have been considered. An
alternating C,4,Cg pattern was depicted in ref. [13] (see also ref. [27]). In our procedure, this
pattern results by following the principle of alternating edges and cuts and keeping the same
any two subsequent rows. The cutting illustrated in Figure 3 is performed horizontally. This
pattern was previously used for tiling spherical fullerenes. [28]

In order to reduce the strain tension in pure polyhex tori, a number of pentagons and

heptagons were introduced. [23] When a pure Cs,C7 pattern is used, the lattice is called
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FIGURE 3. A C4,Cg pattern and its optimized form.



azulenoid. [13] The pentalene (i.e., two fused five-membered rings) apparition is not a
backtracking in tori, since a more pronounced curvature occurs in such structures (see below),
in comparison with the spheroidal fullerenes.

In our procedure, the construction of a pure Cs,Cy-pattern needs four vertex rows (i.c.,

a (0 mod 4) lattice — Figure 4), In case of a (2 mod 4) network it results in a Cs,C4,C7-pattern

(Figure 5).
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FIGURE 4. A Cs,C-pattern

In the above constructions, non-twisted square lattices are used. We stress here that,
excepting the patterns involving Cs and C, our tori are non-twisted lattices (see below). This
fact is in contrast to the parallelogram procedure, where, even for ¢ = 0 (see above), some

twisting (e.g., by an angle of pi / 6) appears.
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FIGURE 5. A Cs5,Cg,C7-pattern
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Let now consider a twisted square-like lattice (Figure 6) and follow the above
principle of cutting. Different patterns appear, function of the number of vertex rows affected
by twisting. In case of an odd number of twisted rows (denoted here by ¢,), two rows of
alternating Cy, Cg polygons appear among the Cg ones. Conversely, when the number of rows

is even (marked by #,), pure Cq pattern results.

t1, C4,Cs,Cs 2, Cs

® N s B R
5 D) ek s 7. o I
@ N O 0 oa w N

B Pl e [ T B B B |
12 34 56 78;: 1

FIGURE 6. Patterns resulted by cutting procedure in odd and even
number of vertex rows , respectively.

The optimized form of these patters will be illustrated below.

LEAPFROG TRANSFORMATION OF POLYHEX TORI

The leapfrog transformation of a map (i.e., a combinatorial representation of a closed
surface) involves the omnicapping (i.e. stellation) of its faces followed by dualization. [29-32]

Omnicapping a map consists of adding a new vertex in the center of each face and
connecting it with each vertex of the face boundary. Dualizarion is accomplished by locating
a point in each face and joining two points if their corresponding faces have a common edge.
Within leapfrogging, the dualization is made on the stellated transform of the map.

In polyhex tori, two cases appear, function of the starting lattice: £,Cq and »,Cq. The
dualization step will decide the type of the leapfrog product.

(a) Case of h,Cg-pattern (i.e., phenanthrenoid- ): the product is an anthracenoid net. In
our approach, it is equivalent to a v,Cs-pattern. The leapfrog process acts in the sense of

expanding (three times) the n-dimension of a torus. Figure 7 illustrates the stages occurring in



123

the leapfrog transformation of an k,Cg net. It appears more clear after geometry optimization,

as illustrated in Figure 8: a pure, non-twisted, v,Ce-patterned, Tg 24, c6 is obtained from the

smaller, i, Cg-patterned, Tg g n,cs.
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FIGURE 7. Stages in the leapfrog transformation of a k,Cg -pattern
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FIGURE 8. Leapfrog transformation of type 3*n: Tg_gn, c6 — T, 24,v, Co
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(b) Case of »,Cg¢-pattern (i.e., anthracenoid-): the product is now a phenanthrenoid,
h,Cg-patterned, net (Figure 9). In this case, the leapfrog transformation acts by expanding

(three times) the ¢-dimension of a torus (see above).

FIGURE 9. Stages in the leapfrog transformation of a v,Cg -pattern

Figure 10 gives a nice example in this respect. Observe that, as the c-dimension increases, the

torus becomes more flattened, in contrast to the “idealized” polyhex torus, given in Figure 2.

Te.18.,c6 () T6.18..c6 (b)

Figure 10. Leapfrog transformation of type 3*c: Te,18,.c6 — Tis.184.06
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Concluding, the leapfrog transformation of the non-isotropic polyhex net leads to the mutual
interchanging of its twin patterns: i1,Ce and v,Cy, respectively. Different stability is expected
for the different phenanthrenoid and anthracenoid isomers (as shown in the next sections).

MOLECULAR MECHANICS COMPUTATIONS

As a consequence of diverse pattern covering a toroidal surface, several isomers (i.e.,
different patterned lattices) are expected for a given T., torus. Our computer program
enabled us to generate tori up to 1000 vertices, with the above described tessellation. The
interest is now to find structures plausible from the point of view of chemistry, i.e., plausible
molecules.

In a first approximation, we calculated the total energy, as provided by molecular
mechanics calculations. The structures considered here (and illustrated below) are isomers of
Tgo4, having 8 x 24 = 192 vertices (e.g., carbon atoms). They are sufficiently large to
minimize the strain energy given by a more pronounced curvature of a toroidal, compared to a

spherical surface. Each structure is given as side view (a) and top view (b).

Ty 2406 (a) Ts24n06 (b)
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The value exhibited by Tg 24 5.ca.c8 (entry 6) is a normal one, since small, strained C;
rings are present.

The mixed pattern Cs,Cs,C7 was considered as an abnormality statistically favored to
occur in a polyhex isomer, particularly in large structures. This pattern, as well as the full
Cs,C lattice show a some degree of twisting, in comparison to the standard Cs patterns.
However, in case of Cs,Coand C; pattern the strain energy (Table 1, entry 8} is even lower
than that exhibited by the polyhex isomers (Table 1, entries 2 and 4). Among the non-twisted
structures, Tg 24, 6 (entry 4) shows the highest energy (equivalent with highest instability).

The twisted structures, of #,,k,C4,Cg,Cs and £,,2,Cs type (Table 1, entries 12 and 14)
exhibit a normal higher level of energy.

Interesting results we obtained when considered perhydro-tori, i.e., toranes, named by
analogy to alkanes, or totally hydrogenated hydrocarbons. Such structures, with no pi bonds,

show low reactivity (paraffinum, in Latin) and any aromatic character (see the next section).

Ts24nc05.0007 (2) Tg 24.m0506.07 (D)

Normal toranes, e.g., those in entries 1, 7, 9, 11 and 13 of Table 1 exhibit a lower

energy (i.e., a higher stability), in comparison with the corresponding pure carbon tori. In case
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of Tgaapce the hydrogenation results in an exacerbating instability, suggesting a more
eclipsed disposition of the hydrogen atoms.

An evaluation of lattice dimensions is possible, from the optimized geometries. Data,
given in Table 1 are: internal diameter djy, external diameter deyy, wall thickness w and
height % (in Angstroms). In case of hydrogenated structures, the lattice dimensions refer to the
skeleton only, the hydrogen atoms being disregarded. Even so, the lattice appear as somewhat

expanded, and no exception was observed.

Ts 2401 0030008 (a) Ts,24.01.4,c4.06.08 (b)

TABLE 1. Data for T8,24; Energy E (MM+; Kcal/mol), Internal Diameter dj ,
External Diameter d,x,, Wall Thickness w and Height & (in Angstroms)

No Torus E dipg  dpy W h
| 8,24k CeH 2799.95 1420 20.76 3.28 3.93
2 824,hCs 354404 1294 18.67 2.87 3.54
3 824v.CeH 9712.50 7.42 12.16 2.82 7.33
4 824v.Ce 5097.72 7.14 11.70 2.37 7.90
5 824hCsCsH 4655.41 1474 20.36 3.16 3.37
6 824.hCiCy 3749.46 1425 19.70 3.12 3.52
7 8248 CsCsCo,H 229357 14.10 2030 3.27 3.62
8 8.24.hCsCoCr 308114 1361 19.26 3.06 3.40
9 824hCsCo,H 4164.33 1492 21.67 3.39 3.69
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10 8,.24,h,CsCy 4529.23 13.82 19.82 2.67 3.13
11 824.,h,Cis,Ce,CsH 4050.41 14.77 21.02 3.34 3.71
12 8,24, 1,,h,C;,Cs,.Cs 449198 12.76 19.12 3.43 3.15

13 8,24.6,,h,CéH 5694.79 11.44 18.97 3.87 3.80
14 8,24, £,h.C, 7381.00 992 17.01 3.89 3.79
At the end of this section, two polyhex tori, showing compl y di ions, as a

possible assembly of isomers, is presented in Figure 11. The dimensions are as follows:

T20,30,C6 (d.'m= 18.18; du-f =23.56;w=2.69; h=10.73)
T30,20.06 (Bim=11.42;dex = 16.61; w =2.65; h =16.90)

Some enlarged dipe = 19.66 of T2, 30, s is plausible to accept the guest (T30, 20,c6 of

deyy = 16.61) into its hall to form a double layer (of 1200 atoms) assembly.

Tao30.c6 & Ta020,06 (2) Tao30c6 & T302006 (b)

FIGURE 11. A double layer assembly of 1200 atoms
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SEMIEMPIRICAL COMPUTATIONS

A preferable fullerene [29] obey, in others, the isolated pentagon rule. [33,34] It
means that, for higher stability, a trivalent structure, embedded on a closed sphere-like
surface, should avoid strained or antiaromatic rings, such as triangles, squares or abutting
pentagons (i.e., pentalene), the boundary of which is a 8-membered, antiaromatic cycle. Four
membered rings on the surface of fullerenes are, however, not completely excluded as recent
molecular orbital calculations have shown [28,35] Actually, heterofullerenes containing only
four and six membered rings could be even more stable than their carbon analogues [36-38].

In order to asses the effect of other than six membered rings on the surface of these
tori as well as that of the saturation, we have performed semiempirical molecular orbital
calculations at the PM3 level on a set of Tgzs systems. Table 2 summarizes the results of
single point calculations (at the geometry obtained at the mm+ level) on various members of
this series along with those obtained after full optimization at the PM3 level.

Some remarks impose:

(a)Toranes are far more stable than the corresponding pure carbon structures (see
Tables 1 and 2); this fact is in line with the results of ab initio and semiempirical calculations
carried out on the fullerene-fullerane systems. {38,39]

The HOMO-LUMO gaps (both for the single point calculated as well as the optimized
species) increase on going from torenes to toranes, suggesting a kinetic stabilization. This
finding can be interpreted in terms of localization of the surface electron pairs of torenes in
the C-H bonds of toranes with the subsequent diminution of the surface interelectronic
repulsions.

(b) Data suggest that the Cs,Cq,C7 systems (Table 2, entries 5, 6 and 14, 15) should be
thermodynamically more stable than other isomers (of Tg24) containing pure (Cs,Cs), (Cs) or
(Cs,Cy) lattices.
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This result is in agreement with those obtained by other authors, [18,23] which
showed that insertion of equal number of pentagonal and heptagonal defects might reduce the

strain energy.

TABLE 2. PM3 Calculation for Ts24 of Various Patterns:
Enthalpy of Formation AH; (kcal/mol) HOMO, LUMO
and HOMO-LUMO Gap HL-G (eV):

Torus Ts4 AH, ___HOMO LUMO HL-G
1 h.CeH 255400 9108 1105 10213
2 h,Ce,H* 2403.50  -9.010  0.650
3 hCCyH 251809 9707 1126
4 hCCyH* 228955 9500  1.240
5 hCsCeCr,H 197457  -9.170  1.898
6
7
8

hCsCsCrH* 181193 -9.120 1.960
h,CsC3,H 426405  -9.175 0.766
t,,h,Cs,Cs.Cs, H  7299.98 -8.658 1.727

9 6,h,CsH 14039.06  -7.079 0.662

10 h,Cs 711486  -7848  -4.235
11 h,Ce* 630144  -8.062  -3.790 :
12 hC,Cs 8913.97 -8.308 4629  3.679

13 h,CiCs* 703641 -9.031 2492 6539
14 RCsCoCy 690663  -9.126  -4.276 4850
15  hGCsCeCi* 579062 9022 2951 6171
16 h.CsCy 1129372 9035 -3998  5.037
17 6,8, CeCeCy 975710 8494  4.273  4.221

Values corresponding to the optimized structures at the PM3 level

The semiempirical PM3 [40] calculations have been carried out by using SPARTAN
5.0 package [41] on an Octane Silicon Graphics machine, and GAMESS-US [42] installed
under LINUX on a Pentium III system.

Molecular mechanics (mm+ force field) optimizations have been performed by using

HyperChem 4.5 from HyperCube. [43]
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CONCLUSIONS

Toroidal fullerenes, along with tubulenes and classical spherical fullerenes became a
subject of intensive rescarch beyond the molecular frontiers. A third way in constructing tori,
namely by transforming a square-like net (embedded onto a toroidal surface) into polyhex
and/or variously tiled lattices, is added to the well-known graphite zone-folding and adjacency
matrix eigenvector procedures. The structures thus generated become plausible candidates to
the real molecule status as soon as they are optimized by a molecular mechanics or, better, by
a quantum chemical computer program. Preliminary data enabled us to propose toranes (fully
hydrogenated) rather than torenes (aromatic or olefinic) as possible chemical tessellating of a
toroidal surface. Further research is directed towards finding the equivalence of our structures

to the canonical representation [11] and construction of aggregate supramolecular assemblies.
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