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Abstract. Covering a toroidal surface by quadrilaterals and their transformation by leapfrog
and other operations are illustrated.

INTRODUCTION

Carbon nanotubes and their closed, circular forms with toroidal shape have been
identified among the laser irradiated graphite products. [1-3] A torus can be viewed as a tube
with joint ends and, conversely, a tube can be understood as a cut torus. Since a torus is
covered by a continuous surface, any edge-vertex lattice embedded on that surface will
generate a polyhedral torus. As they can get rise from a graphite sheet, by a zone-folding
process, [4-6] it is conceivable to take the single-wall products as the objects of the covering
problems herein discussed. For general aspects in covering a graph, the reader can consult
refs. [7,8] We limit here to square-like tori and their transforms, obtainable by applying some
simple operations.
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TESSELLATING A TORUS

The most simple covering of a toroidal surface is by a rectangular (i.e. square-like)
net (Figure 1). When gluing, the tube ends can be forced offset, the resulting lattice being

twisted (see below). In our procedure it is called a v-twisting (i.e., vertex columns are

vertically shifted).
Standard, Cs h-Twisted Cy
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FIGURE 1. Standard C, faces and a h-twisted pattern.

When the twisting shifts vertex rows horizontally it results in a h-twisted pattern (see Figure
1). Twisting can be achieved either to the right or to the left hand side. It is easier understood

if addressed to cyclic permutations. Examples are given below.

Tg,12,c4 (nontwisted) To,12,m6,c4
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Te.24,m2,04 () To244n2.c4 ()

The name of a torus T, pcs . generated by moving a c-membered cycle around
another n-membered cycle [9] must be completed by adding the twisting specifications: th and
tv, a third letter for the sense (e.g., thr — twist, horizontal, rectus), followed by the number of
twisted row faces (integers, between l-c, and 1-n, respectively).

For generating a rhomboidal pattern, pi/4 rotated with respect to the original square
faces of the torus, a transformation like that shown in Figure 2 is proposed. The term

“horizontal” reminds that horizontal edges are moved.

: 00000
i
KKIKKIKH]: 1XX0X000800

FIGURE 2. Rhomboidal patterns rh

Nice tori can be thus obtained (see below): Te 12n,c4 is further transformed by adding
vertical edges in each of its faces to give Tg 12 4n,v,c3 » @ sequence of square bipyramids, joined
by a common triangle. If horizontal edges are added to Tg 2,44 One obtains the transform

To.12.0h4,C3- Both derived structures are regular graphs of degree 6, covered by triangles
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(i.e., deltahedranes [10] — denoted by Cs in the name of structure).

Te12.rh,c4 Te.12,0h0.C3

In continuing, let's add to structure Te 2,4, alternatively, horizontal and vertical
edges, so that no two original rhomboidal faces, sharing a common edge, have the same h or v
added edge. It results in a deltahedrane T 12,7n sre1,c3, Mmeaning the omnicapped transform (see
the next section) of the Ts )2 c4 rectangular lattice. Each of its faces is capped (stellated) by
pyramid-like relief. Such a structure can be made, of course, by adding a vertex over the

center of each square-like face, followed by joining it by each of the four corners.

LEAPFROG

Leapfrog transformation of a single-wall torus invelves the stellation of its faces
followed by dualization. [10]
Note that a torus is a closed surface. A combinatorial representation of a closed

surface is called a map M. [11] Stellation and dualization are operations on maps.
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Let denote in a map: v - number of vertices; ¢ - number of edges; f/ - number of faces
and d - vertex degree. An asterisk * will mark the corresponding parameters in the

transformed map.

Stellation St of a map consists of adding a new vertex in the center of its faces
followed by connecting it with each boundary vertex. It is also called a capping operation or
trianguiation. [10,11]

The resulting omnicapped map shows the relations:

SHM): v =v+f
¢ =3e
f'=2e

so that the Euler’s relation: v — e + f=2 - 2g (v, e, f, g being respectively the number of
vertices, number of edges, number of faces, and genus) is obeyed. Note that a torus is of
genus one while a sphere or a cylinder are of genus zero.

Dualization Du of a map can be achieved by locating a point in each of its faces. Two
such points are joined if their corresponding faces share a common edge. The new edge is
called the edge dual Du(e) and the transformed map, the (Poincaré) dual Du(M). The vertices

of Du(M) represent the faces of M and vice-versa. Thus the following relations exist:

Du(M). v o= f

.

fo=v
Dual of the dual recovers the map itself: Du(Du(M)) =M.

Leapfrog Le is a composite operation. It can be written as:
Le = Du(St(M)) ()

Within the leapfrog process, the dualization is made on the stellated map (Figure 3). A

sequence of stellation-dualization rotates parent n-gonal faces by pifn. [12-14]
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FIGURE 3. Fate of a square-like face by Leapfrog;
circles denote the vertices in Le transform.

Consider the basic relations in a map:

ann =2e @
Ddv,=2e )

A map embedded in a torus can be a regular 4 graph (i.e. a graph having all its vertices
of the same degree d). From (2) and (3) it follows that:

v=(U/d)Y rf, “

where the subscript n means the n-gonal face.

Theorem 1.

The number of vertices in the leapfrog transform Le(M) is d times larger than in the

original map M, irrespective of the type of tessellation.

For demonstration, let's go back to the dualization process (Figure 4):
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(a) (b)

FIGURE 4. Dualization of the omnicapped faces around a four-degree (a)
and three-degree (b) vertex

Note that a bounding polygon is formed around each original vertex. Also note that, as
a consequence of the involved triangulation, the vertex degree in Le(M) is always 3. In other

words, the dual of a triangulation is a cubic net. [11]

Two cases usually appear:

Case (a): d = 4; the bounding polygon is an octagon (n = 8).

vE=(1/d*)[nf, +8£,]1= (1/d*)[nf, +8v] (5)
By virtue of (4), v =nf, /d = nf, /4, so that eq 5 becomes:

v¥=(1/3)[nf, +8(nf, /4)] =nf, (6)
The ratio v*/v (i.e. the multiplication factor in the leapfrog process) is:

v¥/lv=nf Knf, 14)=4 @]
Case (b): d = 3; the bounding polygon is a hexagon (n = 6).

vE=(1/d*)[nf, +6 f,]1=(1/3)nf, +6v] (8)

In this case v = nf, /3, so that (8) becomes:
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v¥=1/3)[nf, +6(nf,/3)]=nf, ()]
and the multiplication ratio:
v*¥/v=nf, /[(nf,/3)=3 (10}

At this stage, we can generalize:

vE=(L/d*)[ Y nf, +2dvi=(113) (Y nf, +2d(3 nf, 1 d)]
=33 nf, ld* (n

v¥[v=03Y nf, 1d*) () nf, | d) =3(d/d*%) (12)

Since d* is always 3 in Le(M), the multiplication ratio depends only of the vertex
degree in the original map, irrespective of the face boundary polygons.
A simpler demonstration takes into account eq 3, the fact that the map is a d regular

graph and the observation that each edge in M shares two vertices in Le(M). Thus,

vE=2e=dv (13}
v¥/v=dv/v=d (14)
By completion,
Le(M): vio=dv =2e
e =3e
fi=f+v

Leapfrog transformation can be achieved by a different sequence of simple operations:
Le = THDu(M)). It is the well-known way of dualization of dodecahedron to icosahedron
followed by its truncation in obtaining the Ceo fullerene. The goal of such a transformation is
to isolate the pentagons appearing on the mapped sphere, in fullerenes.

In square tori, the pi/4 rotation, appearing by Le, would produce rhomboidal lattices
(Figure 5) that are quite difficult to implement in transforming a square-like net.



FIGURE 5. Dualization within Le transformation of a square-like net.

A square torus and its leapfrog transform are illustrated in the following:

Tancs (@) Ts12.c4 (b)

Ty 24rmncac8 ()
Le(Ta 12.04)

DUAL OF MEDIAL

Medial Me is an important operation of a map. [11] It is achieved as follows: put the
new vertices as the midpoints of the original edges. Join two vertices if and only if the
original edges span an angle. More exactly, the two edges must be incident and consecutive

within a rotation path around their common vertex in the original map.
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The medial graph is a subgraph of the line-graph. [15] In the line-graph each original
vertex gives rise to a complete graph while in the medial graph only a cycle C, (l.e., a d-
membered cycle, d being the vertex degree) is formed. All medials are 4-valent graphs and
Me(M) = Me(Du(M)). The transformed parameters are:

-

Me(M): vV =e
e =2
fi=f+v

The medial operation rotates parent n-gonal faces by pi/n.

Dual of medial is a composite operation (Figure 6):

Dm = Du(Si(Me(M))) (15)
a o0, »
! gl @l -
+ o] J 1
— 11 11
L1/
o« e-1-¢ L]
|

FIGURE 6. Stages in a Dual of medial Dm transformation of a square net..

Theorem 2.
The vertex multiplication ratio in a Dm transformation is 2d, irrespective of the fuce

boundary polygons. It preserves the initial mutual orientation of all parent faces.

With the observation that each vertex v of M gives rise to twice d new vertices in

Dm(M) it is easily to demonstrate that:

v¥/v=2dv/v=2d (16)

and it does not depends on the kind of polygonal faces. The multiplication is twice that
induced by Le. Since its consisting simple operations rotate the parent n-gonal faces by an
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even number of pi/n, the global result of Dm is the conservation of their original mutual

orientation. The transformed parameters are:

Dm(M): v o= 2dv=4e
e = 6e
fi=f+vre

This operation is particularly applicable to square tori, with a multiplication ratio 8.
The expansion is eventually anisotropic, over the two dimensions (¢ x n =4 x 2, and vice-
versa, for a h- and v-net, respectively) as illustrated below for the Dm transforms of Ty g cq

T\6,16.4.c4,c8 (b)

Ti6,16,.c4.08 ()
Dm(Tygc4); 1

Ty 32v.cacs(@)
Dm(Tygca); 2

Of course, the two tori: Tg,16,4#,c4,c8 (1) and Tg 32, c4,c8 (2) represent one and the
same structure. Note that the bounding polygon is an octagon, as expected for a 4-

valent regular graph (see above, the medial graph).
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Q-Transformation

There exists another transformation that preserves the initial orientations of all parent
faces in the map. It is called the quadrupling transformation Q. [13,14] The Q operation can
be viewed as a particular case of Dm:

Q = Du(St(Mer(M))) amn

with Mer being a reduced medial, where the face around each original vertex collapses into

this vertex, that preserves its original valency (Figure 7).

FIGURE 7. Q operation in a square face.

Theorem 3.
The vertex multiplication ratio in a Q transformation is d + 1 irrespective of the type

of tiling the original map.

Keeping in mind that for each vertex v in M results d new vertices in Q(M) and the old

vertices are preserved, the demonstration is immediate:
ve=vd+v (18
and the multiplication ratio:
vifv=vd+D)/v=d+1 (19)

Q operation involves two pi/n rotations, so that the initial orientation of the polygonal

faces is conserved.
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The transformed parameters are:

.

oM): v =v+2e=v+dv
e =4de
Fr=fre
In square nets, this operation leads to nonregular graphs (degree 3 and 4) - as
illustrated below:
Q(Ts,8,c4.c6) (2) Q(T4,8,c4,c6) (D)

This operation works well in trivalent maps (e.g. the polyhex tori), with 3 + 1 = 4,
multiplication ratio, and conserving the regular degree 3.

CONCLUSIONS

A square-like toroidal net can be transformed in a variety of derivatives by applying
suitable operations. Amond the above discussed operations, some occur with preserving the
original valency (i. €., 4 - see the rhomboidal transformation). Some others (e.g., Le and Q
operations) change, partially or totally the initial valency to cubic valency (ie., 3). Only the
novel Dm operation is able to transform a square-like torus (a regular graph of degree 4) into a
regular, cubic torus, with preserving the original mutual orientation of all parent faces.

In opposition to polyhex tori, more agreed by organic chemists, the square-like tori
and their transforms are expected to appear in some supramolecular inorganic compounds

(see polyoxometalates [16])
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