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ABSTRACT
In their fundamental paper from 1929, Lunn and Senior show that the groups of sub-
stitution isomerism and stereoisomerisin of cyclopropane can be reconstructed up to
eonjugation if one knows the numbers of its mono-substitution and di-substitution ho-
mogeneous derivatives. The proof is an exhaustive quest through the list of orbit numbers
for all subgroups of the symmetric group of degree 6. Here we present more conceptual
proofs of these statements.

5. INTRODUCTION

5.1. We consider the three carbon atoms of cyclopropane C'3 Hg, which are united by
single bonds, as a skeleton = with 6 univalent substituents. The following numbers of
substitution isomers of cyclopropane are experimentally known:

N(s1y:x = 1 (mono-substitution derivatives}),
Nig2y.x = 4 (di-substitution homogeneous derivatives).
This paper contains proofs of the next theorem, and its two corollaries:

THEOREM 5.1.1. Let G < Sg be a permutation group. The equalities

nsape =1 nuge =4 (5.1.2)

hold if and only if G is conjugated in S¢ to the group
((123)(436), (14)(26)(35))
of order 6. which is isomorphic to the dihedral group of order 6.

COROLLARY 5.1.3. The group G < Sg of substitution isomerism of cyclopropane coin-
cides up to conjugacy with the group



((123)(456), (14)(26)(35))
of order 6. which is isomorphic to the dihedral group of order 6.

COROLLARY 5.1.4. The group G' < Sg of stereoisomerism of cyclopropane coincides
up to conjugacy with the group

((123)(456), (14)(26)(35), (14)(25)(36))
of order 12, which is isomorphic to the dihedral group of order 12.

In Lunn-Senior’s paper [6. V], the previous statements are proved by using only the list
of the orbit numbers of all subgroups of the symmetric group Sg. In the present paper
we give conceptual proofs of these results.

5.2. In Section 6 we establish the cycle type statistics of the group G of cyclopropane.
Here we use the graph T' = TG, H, (4,2)) which was introduced in (3, 2.2], in order to
show that G contains neither transpositions nor 3-cycles. Since the partition (4, 1%) is
less than the partition (4,2) with respect to the dominance order, the inequalities [2.
5.3.2] allow us to use the results from [3, Section 3], and this makes possible for the
linear system [3, 1.2.6] to be solved. Section 7 is devoted to proofs of Theorem 5.1.1,
and its Corollaries 5.1.3, and 5.1.4. As in Part I of this paper (see [3]), the main tools
nsed in these proofs are Sylow’'s theorems.

6. THE CYCLE TYPE STATISTICS OF THE GROUP OF CYCLOPROPANE

6.1. We can identify the set Tjy ) of all tabloids A = (A, Ay) of shape (4,2) (see [4,
Ch. 2, 2.2]) with the set of all two-element subsets {i, j} of the integer-valued interval
[1,6], via the rule 4, = {i,j}.1<i< j <6.

LEMMA 6.1.1. Let G < Se be a transitive permutation group. Then the inequality
Ny2y.6 = 3 implies gz 4.6 = 9356 = 0.

PRoOOF: For, since the inequality ng ). > 3 holds, the graph I' = I'(G, H,(4,2)) has
at least 3 connected components, that is. the corresponding partition v = (G, H.\)
has length > 3 for any subgroup H < G (see [3, 2.2]).

Since the group G is transitive, for any pair i, j, 1 <7 # j < 6, there exists an element
;5 € G, such that o,;(1) = j.

Let us suppose that g5 14, > 1. The transitivity of G yields the existence of two
transpositions in G with disjoint supports (see the proof of [3, 3.2.2, (ii)]). After eventual
conjugation in S, we can assume (12) € G, and (34) € G. We set H = ((12),(34)).
There are 8 H-orbits in T4 »5:

(D (I (Jvy (V) (VI) (VII) (VII)
{12} {1,3} {3.4} {15} {16} {3,5} {3.6} {5.6}
El 4% {25} {2,6} {4,5} {4,6}

{2.4}

We consider the graph T' = [(G. H, (4, 2)) with vertices (I),...,(VIII). and the corre-
sponding partition v = v(G, H.(4.2)) of 8. (see 3, 2.2]).



L LT R T T e I T

(hy (In (I (Ivy (V) (Viy (VI
{12} {14} {Ls} {L.6} {45} {4.6} {56}
(2.3} {24} {25} {2.6}
(1,3} {3.4} {3.5} {3.6}

We consider the graph T' = I'(G. H.(4,2)) with vertices (I)....,(VII), and the corre-
sponding partition » = »(G, H.(4.2)) of 7.

Because of m16{1,2} = {6,016(2)}. 015{1,2} = {5,015(2)}, and 014 {1,2} = {4d. 514(2)},
we obtain deg(I) > 2.

At least onc of the sets o46{1,4} = {o46(1).6}, and 04{2.4} = {044(2),6}, contain an
element i with 1 < ¢ < 4. Then the equality 045{1,4} = {045(1), 5}, implies deg(11) > 2.
If we transpose 4 and 5 (respectively, 4 and 6), we get vertex (II]) (respectively, (IV)),
instead of vertex (I1); hence deg(I1T) > 2 and deg(IV') > 2.

The inequalities deg(V') > 1, deg(VI) > 1, and deg(V II) > 1, are obvious.

Since the connected components of [ are complete graphs, the above inequalities vicld
that at least one of the vertices (V). (VI). and (VII), has degree > 2. Therefore all
non-zero components of the partition v = (v, 19,13, ...), except possibly one, are > 3.
The remaining compounent is > 2. Thus, vy > 3, 2 > 3. and vz > 2. which contradicts
the equality vy + 19 + 13+ ... = 7.

LEMMA 6.1.2. Let G < Sg be a transitive permutation group. Then the inequality
Ny = 3 implies

5000 = Gi4.21:6 = G216 = Gz = 0.












