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Abstract

In the statistical description of dynamical systems, an indication of the irre-
versibility of a given state change is given geometrically by means of a (pre-Jordering
of state pairs. Reversible state changes of classical and quantum systems are shown
to be represented by isometric state transformations. An operational distinction
between reversible and irreversible dynamics is given and related to the geometric
characterisation of the associated state transformations.
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1 Introduction

In this paper a characterisation of the reversibility or irreversibility of the time evolution
of a dynamical system will be given that emphasises the geometric structures underlying
any statistical description.

The statistical description of a dynamical system is based on the dual notions of states
and observables. The states form a convex set of probability measures (classical system)
or density operators (quantum system). These convex sets span in a natural way an
ordered real vector space, called state space. For a classical system this is the space of
bounded (signed) measures on phase space; in the case of a quantum statistical system,
the state space is the set of self-adjoint trace class operators over the system’s Hilbert
space. Observables are then represented as bounded affine functionals on the set of states
and hence as bounded linear functionals on state space. This entails the description of
observables of a classical system as functions on phase space and of quantum observables
as self-adjoint operators on Hilbert space. In turn. a statistical state can be viewed as
a linear map on the real vector space of observables, assigning to cach observable its
statistical average.

A convenient unified statistical description of classical as well as quantumn systems is
thus given by the structure of a statistical duality {V, W), where the state space V' is
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taken to be a complete base norm space, with the convex base I of the positive cone
1" representing the set of states; and the space W of observables is a complete order
unit space with closed order unit interval E = [0, €] and such that W can be identified
as a a(1”".1")-dense subspace of 1. The elements of E, called effects, correspond to
classes of yes-no measurements that are indistinguishable in terms of their statistics. The
number (x, f) := f(x) is interpreted as the probability for registering a ‘yes’ outcome in
a measurement of the effect f € E performed on a system described by the state z € K.
For a lucid introduction into the structure of a statistical duality, cf. Ref. (1]. Recently the
pair {K, E) has been the subject of renewed interest and study and is commonly referred
to as an instance of a statistical model; the set of effects, E, is a realisation of an effect
algebra [2].

The statistical description of the time evolution of a dynamical system is based on the
notion of a stechastic map acting on a statistical state space V', that is, a linear map
@ : V" — 1" that sends states to states, ®(K) C K. A stochastic map @ is a contraction
with respect to the base norm: ||®(z)||, < ||z||; for all z € V. Hence the norm distance
hetween two different states cannot increase under the action of a stochastic map. This
geometric property is taken up here to formulate an operational characterisation for the
(ir)reversibility of a given stochastic map. A necessary condition for reversibility is that
the stochastic map under consideration must be an isometry. The converse implication is
put forward that irreversible dynamics are characterised, on a suitable level of description,
in terms of non-isometric stochastic maps. This conjecture is explored by means of
some case studies of some types of classical and quantum statistical systems. In contrast
to the conventional understanding, a reversible state transformation as defined here is
not necessarily surjective, though still always injective; but the operational definition of
reversible dynamics as a time-parameterised family of reversible stochastic maps will be
seen to force surjectivity.

The mathematical structure relevant to the subsequent investigation is primarily that of
a base norm space, while little use will be made of the dual order unit space of observ-
ables. In a recent related work, a new way of presenting the structure of a statistical state
space has heen developed which emphasises the essential geometric and measure theoretic
aspects of this concept [3]. This reformulation is based on the concepts of measure cone
(representing the statistical state space), its endomorphisms (which turn out to coincide
with the stochastic maps) and, in particular, the mizing distance, an ordering relation of
state pairs that accounts for the dissimilarity of states. Previous investigations were con-
cerned with the fundamental geometric nature of these concepts [4] and their application
in the context of statistical systems [3]. Here the notion of mixing distance will be used
to demonstrate the connection between reversibility and isometric stochastic maps.

The present paper being based on [3], notations, terminology and basic facts are only
briefly summarised.

2 Statistical Description of Dynamical Systems

2.1 Statistical state space — the measure cone
The first definition describes the hasic geometrical features of any probabilistic framework.

Definition 2.1 A triple (117" ¢) is a measure cone if the following postulates are sat-
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isfied:
(a) V' is a real vector space with conver, generating cone V* (V. = V+ ~1V/+ ),
() eV — R is a linear functional, called charge, that is strictly positive (on V+),

€V = {e(2) >0, and e(2) =0 & z = 0}. (1)

It follows that the charge e admits a decomposition e = e, — e_ of e into a difference of
nonlinear, positive functionals ¢ ., where

e VR, z mel(z) =inf {e(z)\ zeVt r-z¢ V*} , (2)
e. @ VoRY, 2z =e(z):= inf{e(y)| yeV*t z+yc i'*}. (3)

Further, it 1s required that ¢ marks the cone contour:
eVt == e(z) = ey(z). (4)

A measure cone (V, V™, ) is suid fo be o measure cone with minimal decomposition if in
addition the following postulate is satisfied:

(¢) To any z € V there exists o decomposition z = 2, — z_, 24, z_ € V' such that the
following holds: e(z,) = e, {z), e(2_) = e_(2). Any decomposition of z with this property
is called @ minimal decomposition of z.

A real vector space V' equipped with a measure cone (V, V™ €) (with minimal decomposi-
tion) will be called an me-space (with minimal decomposition).

One can think of the elements of V' as (signed) measures over some set, while those
of V* represent (positive) measures. Physically, a signed measure is the appropriate
mathematical representation of a distribution of positive and negative charges in space.
In this interpretation, which has been advocated as a valuable heuristic picture by E. Ruch
(4], the charge functional measures the overall net charge.

All known physically relevant examples of measure cones are equipped with a minimal
decomposition which is even unique. Hence in the sequel the term measure cone shall
generally be taken to include the existence of a minimal decomposition.

The set 1'F is a proper (convex) cone so that V' becomes an ordered vector space via
2> 7 & z-—2 € V7' The strict positivity (on V*) of the charge functional e
ensures that the intersection K of the hyperplane {z € Vl]e(z) = 1} with V* is a hasc
of the convex cone V'*. In a measure cone with minimal decomposition the cone contour
condition {4) is a consequence of the strict positivity of e. Any vector space V' associated
with a measure cone can be equipped with a norm. More precisely, a triple (V.17 ¢)
consisting of a real vector space V', a convex generating cone V' < 17 and a linear
functional e is a measure cone if and only if there exists a norm ||-|| marking the cone
contour in the following sense:

zeVt <= e(2) =zl (5)
In particular, the following is a norm of this type:
lzlly = eslz)+e(2) (6)

This norm coincides with the the Minkowski functional of the set B := co(K U —K), the
convex hull of KU —K, which makes V' a base norm space (cf. [5]). The norm || - ||, is
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known as the base norm, but we will referr to it as the 1-norm, thereby making reference
to its prime realisation in terms of the space L'(R) of absolutely integrable functions.
More generally, the 1-norm corresponds to the total variation norm in the classical case
and the trace norm in the quantum case.

[t is worth noting that a decomposition z = r —y, £,y € V'*, is a minimal decomposition
if and only if ||z — ylli = ||z + ylli = e(x) + e(y).

The use of a measure theoretic terminology can be justified quite generally using the fact
that a base norm space (V] - ||;) and its dual order unit space (1*,¢) form a statistical
duality. The set of effects E := [0,e] C V* is the partially ordered set of positive linear
functionals on V" bounded from below by the null functional 0 on V' and bounded from
above by the “order unit” functional e (which serves to define the set K of states in V
as those elements x of V'* for which e(z) = 1). Two functionals @,b in V* are said to
be ordered, e < b, if for all + € V'*, a(z) < b(z). E is equipped with a complement
operation, a = a' := e — a which induces a kind of weak orthogonality: effects a,b are
called orthogonal if their sum a + b is an effect again, that is, if b < a’. The elements
z of V'* (of K). considered as linear functionals on V* via z(a) ;= a(z). act as positive,
additive [r(a + b) = z(a) + z(b) whenever a,b are orthogonal] (and normalised, z(e) = 1)
functions on E, representing thus (probability) measures in a generalised sense.

2.2 State transformations — mc-endomorphisms

The dynamics of a physical system is given by a family of state transformations acting
on its state space KA. In agreement with the statistical ensemble interpretation of the
clements of K, a state transformation should not alter the convex composition of a mixed
state. Hence a state transformation is an affine map; and as such it extends uniquely to a
linear map ® : V — V which is positive (®(V") C V'*) and charge-preserving (eo® = ¢).
Such maps will be referred to as mc-endomorphisms of the me-space with measure cone
(V,V*,e) generated by K insofar as the geometric aspect is concerned; bearing in mind
the physical interpretation, the term stochastic map will generally be used.

Proposition 2.1 Let (V,1V'*,e) be a measure cone equipped with the I-norm.
(1) A stochastic map s a contraction.
(2) A linear, charge-preserving contraction is positve, hence a stochastic map.

Proof. (1) Let @ be a stochastic map. Then for z € V| with minimal decomposition
ez =Ty
1@zlly < 1Pzilly + 1Pzl = llzelly + o=l = I, -

Hence @ is a contraction.

(2) Let @ be linear, charge-preserving and contractive. Let € V', Positive elements z
are characterised by the cone contour condition (4); hence we have to show that ||®z||, =
e(®x). But we have ||®z]|, > e(Pr) = e(2) = ||lzf|, > ||®z]|,, so that equality must hold.0
The semigroup of stochastic maps induces a pre-ordering on the set of state pairs K x K:

(2.3 (&'.4) = (x',y') = (Px,®y) for some stochastic ®.

In subsequent sections we will exhibit conditions under which the sub-semigroup of
stochastic isometries induces au equivalence relation on K x K, (2',y) = (x,y) iff



(2',y') = (P, @y) for some stochastic isometry ¢. Hence an equivalence class contains all
state pairs that. can be connected among cach other by means of some stochastic isometry.
Then on the set of these classes the above preordering becomes an ordering relation.

2.3 Dissimilarity of states — mixing distance

The contractive nature of a stochastic map @ leads to decreasing distances (with respect
to any me-norm) between pairs of states from K under the action of ®. More specifically,
the action of @ leads to decreasing mizing distance.

The mizing distance of x € V*\ {0} from y € V* \ {0} is defined as the map

diz/y) : B" x B" = &, (0, 8) = llazo — Buells o

(zo == x/||zl|s, ete.). Two pairs (x,y) and z',y’') in V* x V'* are called norm-equivalent
if djz/y) = d[='/y']. Thus the mixing distance induces an ordering on the classes of
norm-equivalent pairs from V" x V% via

dlz/y) > dlz' ] == Ya,B € R : [lazo — Byolh > llazf — Byl (8)

This concept is found to possess a canonical geometric interpretation in terms of the
direction distance, a norm-specific metric of angles in affine spaces associated with a
normed real vector space {4l The ensuing ordering of angles suggests among others
a notion of orthogonality which (in the case of state pairs) corresponds to the idea of
maximal mixing distance: z,y € K are called orthogonal, z L, y, if the following condition
is satisfied:

llezo = Byolli = lloza + Byolly Vo, 3 € RT. (9)
If 2 = x — y is a minimal decomposition, then z 1, y; and conversely, if z L, y for
1,y € V*, then z = 2 — y is a2 minimal decomposition of z ([3], Proposition 2.3).

Proposition 2.2 Let (V,V*,¢) be a measure cone.
(1) Any stochastic map @ leads to decreasing mizing distance on K x K :

d®r/dy] < dlz/y] for z,y€K.
Hence, (z,y) 2 (2",y') = dlz/y] > d[z'[/].
(2) A stochastic map ® is an isometry (hence preserving the mizing distance) if and only

if ® is orthogonality-preserving:

fl@zfh =]zl VzeV = d[@z/®y] = d[z/y] Vr,ye K
= (xLyy=®x L, Py)Ve,y € K.

Proof. (1) This is an immediate consequence of the fact that ¢ is a contraction.
(2) Let ® be an orthogonality-preserving stochastic map. Then

(EE0

e(Pzy) + e(®r) [® positive, orthogonality — preserving]
e(zy) +e(z.)  [® charge — preserving)

Iz, -
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Conversely, assume ® to be a stochastic isometry; then for the minimal decomposition of
z€V,z=2z, —z_ one has

e(®zy) +e(Pz.) = e(24) + e(2) = |24 = 2-||, = ||®24 — &2||,,

so that ¢z = ®(z;)—®(z_) is a minimal decomposition as well and therefore orthogonal.
Thus if 2 = 2 — y for any orthogonal pair x,y € V'*, then &z, dy is an orthogonal pair. O
Statement (1) describes the crucial role of the mixing distance as an indicator of irre-
versibility: if the mixing distance decreases under a stochastic map &, then ® cannot be
an isometry, so that there is no stochastic map that would reverse the action of ®. In
this sense the mixing distance has the same function as the (relative) entropy. However,
it is known that under certain conditions (though not in general) the converse of state-
ment to (1) holds, thus showing that the mixing distance is superior to entropy insofar as
its decrease between two state pairs is even sufficient to ensure the existence of: a state
transformation that connects the pair.

Theorem 2.3 Let the measure cone (V,V*,e) be given by V = L' (0, T, p), with (Q, T, )
a separable, o-finite measure space. The following is true: given two pairs of states x,y
and 2,y such that d[2'[y'] < d[x/y], then there exists a stochastic map which transforms
x into ' and y into y'. That is:

(z,9) 3 (', y) & dlz/y] = d[z'/y].

In this form the theorem has been proved in [8]. The theorem was initially found in a
more specific form as a generalisation of a theorem due to Hardy, Littlewood and Polya
on doubly stochastic matrices[7]. Recently this result has been exhaustively generalised
by Ruch and Stulpe to cover all conceivable “classical” spaces of measures [9].

3 Irreversibility

The convex semigroup of stochastic maps acts transitively on the set K. Hence any
transition © — 2’ is physically realisable in the sense that there exists a stochastic map
P such that o' = $z. As a consequence, the phenomenon of irreversibility can manifest
itself only if at least pairs of states and their transitions are taken into consideration [4].
According to Proposition 2.2, decreasing mixing distance is a necessary condition for the
possibility of transforming z, y into 2', 3" by means of one and the same stochastic map.
Thus, if d[®z/®y] # d[z/y], then there is no stochastic map transforming both 2, ' back
into x,y. In this sense, strict decrease of the mixing distance between two state pairs is
an indicator of the irreversibility of the stochastic map @.

Definition 3.1 A stochastic map @ acting on an me-space is irreversible if and only if
there is a pair (¥,y) € K x K such that (®z, $y) cannot be transformed back into (z,y),
te., (®x, ®y) D(x,y).

In general a physical “reversal of motion” involves a time-inversion operation ©, repre-
sented as a positive surjective isometry on V. Thus irreversibility as defined above is
equivalent to (©dz, OPy) O(Ox, Ay), as it should.

An immediate consequence of Proposition 2.1 is the following.
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Proposition 3.1 A reversible stochastic map on an me-space is an isometry.

In cases where Theorem 2.3 is valid it follows that a stochastic map ® is reversible when-
ever for arbitrary state pairs 2.y € K one has d[z/y] < d[®z/Py]. But this amounts to
saying that @ is an isometry. Hence, one has the following result.

Theorem 3.2 Let V' be an me-space equipped with the 1-norm in which the statement of
Theorem 2.3 holds. Then o stochastic map & on V' is reversible if and only if it is an
isometry. This is the cuse exactly when the mizing distance 1s invariant under ®.

Within the domain of validity of this theorem, the symmetry of the relation (2, y') =
(z,y) defined at the end of subsection 2.2 is thus established, so that this relation is an
equivalence relation.

Definition 3.1 constitutes what we referred to as an operational characterisation of the
irreversibility of state changes. Theorems 2.3 and 3.2 provide the foundation for the
geometric indication of irreversibility via strictly decreasing mixing distance. Theorem
2.3 also gives a sufficient eriterion for the operational realisability (existence of a stochastic
map) of certain changes (jointly sending state pair x, y to state pair z’, y). The question
arises whether strictly decreasing mixing distance under the action of a stochastic map
&, or equivalently, lack of the isometric property of @, fully captures the physical content
of the notion of irreversibility. The study of irreversibility is primarily concerned with
dynamical processes taking place over a period of time rather than for a single time
step. Thus reversibility or irreversibility is to be regarded as a property of a (statistical)
dynamical system, represented as a time-parameterised family of stochastic maps, (@),
with 7 = [0,20) or T = R. (For simplicity we assume homogeneity of time and allow for
time to extend to the infinite future (and past); hence for any time #y, the transition to tg+¢t
is given by ®;). Moreover, it is important to bear in mind that the irreversible behaviour
of a dynamical system emerges at a certain level of description, usually referred to as
macroscopic or thermodynamic. This has led to the well-known problem of reconciling the
omnipresence of a time arrow in large-scale phenomena with the microscopic description
of the world which is usually taken to be based on the fundamentally reversible dynamical
Jaws (of Newtonian mechanics or quantum mechanics). Without going into further detail,
we recall that the statistical description ((quantum) statistical mechanics) was introduced
as a basis for any attempt to formulate a consistent bridge between the two {microscopic
and macroscopic) levels of description. In fact, statistical models as defined in Section
2 can be viewed as a convenicnt unified framework for formalising all kinds of coarse-
grainings used to reflect the coarseness of macroscopic observations as well as the tracing
out of unobservable degrees of freedom.

The fact that in the modelling of real physical systems there is usnally a hierarchy of
levels of descriptions shows that a characterisation of the irreversibility or reversibility of
the observed dynamics must depend on the level of description appropriate to the feasible
observations. Thus the formal definitions of (ir)reversibility for (a) a single stochastic
map and (b) for a statistical dynamical system (®),c are not in themselves sufficient to
characterise the irreversible behavionr of a physical system but they must be supplemented
with a specification of the appropriate level of description to which they pertain. We
believe the following definition captures those features that are commonly accepted as
characteristic of irreversible physical processes. To formulate the notion of a reversed
process, one must postulate the existence of a stochastic map © which represents the



action of time inversion, or more precisely, motion reversal. As a double application of
@ should restore the original state of motion, © must equal its own inverse and thus is a
bijective stochastic isometry.

Definition 3.2 A dynamical systemn ((P,)‘&T on a statistical state space V', with time
inversion operation ©, is reversible if for all 1,

07'9,0 o= 07" (10)

Note that this concept does not stipulate the state transformation to be surjective. It
thus represents exactly the idea of reversing a given state change, by means of the same
dynamics. without changes in the environment. Usually the condition of time reflection
symmetry, ® ' = ®_,, is taken to be part of the concept of reversibility. so that a
semigroup (@), actually would have to extend to a group in order to be reversible.
These considerations will be illustrated with a number of case studies.

4 Case Studies

4.1 Classical Dynamical Systems

In this section (©2,L, i) denotes a separable, o-finite measure space and V' = V, the
“classical” me-space corresponding to the real-valued, bounded, g-additive set functions
on (9,%) which are absolutely continuous with respect to p. Hence, V, is isomorphic
to the Banach space L'(Q, X, u). In this situation Theorem 2.3 can be used to obtain
a characterisation of reversible state transformations which is based on the existence of
an inverse map. In general it need not be true that the inverse of a stochastic map @
{if it exists) can be extended from the range of @ to all of V,, nor that it is positive
itself; a non-positive inverse, or one that cannot be extended, does not have a physical
interpretation as a state transformation,

Proposition 4.1 A stochastic map @ : V. — ®(V,) is reversible if and only if there exists
an inverse map ®~' : ®(V,) — V. which is positive.

Proof. Let ® be reversible and therefore, by Theorem 3.2, an isometry. The range
®(V,) is a closed subspace of 1, thus a base norm space itself. Due to the injectivity
of @ the inverse &1 exists on ®(17) and is a charge-preserving contraction (in fact, an
isometry). @~ is positive; otherwise there were an element z with minimal decomposition
2 =24 — 2., 2+ € V.7 \ {0} such that ®z € V", in contradiction to the fact that $z_ #0
(note that @ is orthogonality-preserving).

Conversely, if the inverse @' : ®(1.) — V; exists and is positive (it is antomatically
charge-preserving), then & is necessarily an isometry, hence, by Theorem 3.2, reversible.
al

As noted above. the reversibility of a dyvnamical system is sometimes defined by means of
the group property of the respective family of state transformations. We have introduced
a general (statistical) dynamical system as a semigroup (®,),, of stochastic maps acting
on 1. More specifically. given a measure space (Q, £, 1), we will now consider dynamical



systems defined as a semigroup (.9,),20 of measurable maps 5, : 2 =  which leave
invariant. Then the associated semigroup of stochastic maps is determined via

S = [ pd, B BER
L Pyt Sf’mjpﬂ peVs €EX

In the case of a normalised measure space (p(Q2) = 1), the uniform distribution p, = 1o
is a fixed point of all ®,, ¢ > 0. In accordance with Definition 3.1 a semigroup (&, Jezo Of
stochastic maps shall be called reversible if all @, are reversible. While the group property
is sufficient to ensure reversibility in the sense of Definition 3.1, it is not in general a
necessary condition as will be shown by means of an example below. However, for a
fairly general class of dynamical systems the group property is necessary and sufficient for
reversibility. The following result is due to R. Quadt and the author and was originally
published in [10].

Proposition 4.2 Let (Q, B(2), 1) be a normalised measure space, with (§, B(Q)) a stan-
dard Borel space. Let (St)5q be a dynamical system, with induced semigroup (®,),,, and
time inversion operation €. (P 1)159 of stochastic maps is reversible if and only if it can
be extended to a group via 69,0 = @ _,.

Proof. That the group property is sufficient for reversibility is clear from Proposition
41. Conversely, let (@), be reversible. By Theorem 3.2 all the &, are isometries.
To ensure the group extension, one shows that the &, are surjective. To this end one
constructs a family v, : € — Q of measurable, p-preserving, surjective point maps such
that ®,p(z) = pov(x) (p-almost everywhere) for p € V.. The maps v, will turn out to be
uniquely determined up to Borel sets of measure zero. It then follows that an inverse map
&; is defined on all of V, via [, ®; " pdp == Jor1(a) pdpe. Then &_, = ®;!, and the group
property is established. To find +,, note that since (€2, B(2)), is a standard Borel space,
there exists a measurable, bijcctivv map 4 : @ — [0, 1] which induces a bijective isometry

s Vo = LY([0,1], B([0,1]). ) via [5jpdv := Jp1(xy P and v(A) = p (v&"‘(./j\)).
Herf‘ ([0,1], B([0,1]), ¥) is a normalised, separable measure qpace, It follows that the
map ®, := j o @, 05~} is an isometry on L' ([0,1], B([0,1]),#). By Lamperti’s theorem
[11], there exists a measurable, surjectwe map @ : [0, 1] 0 [0.1] ( unique up to Borel
sets of y—measure zero) such that &,f = &,1 01 - fow and [ ~1(A)‘I’:1[o,1]d1/ = [ydv.

Since &,1 wa] = ), it follows that ¢, is measure-preserving. Now, using the equation
jplz) = pop~'(x) (valid almost everywhere), onc obtains the desired result: ®,p(z) =
gj" o d, ojp) () = poyp~ oy 0u(z) = poy(x) (valid almost everywhere). O

here exist semigroups of reversible stochastic maps which do not admit an extension
to a group. As an example, let (R, B(R), 1iz) be the Borel-Lebesgue measure space. It is
easy to construct a measurable bijection v : R — (0, o¢) which, together with its inverse
771 (0,¢) = R is measure-preserving. For example, consider a partitioning of the rcal
line into intervals of the form (n.n + 1], n integer. If the label n is even (odd), call the
corresponding interval even (odd). Now the map v may be defined by shifting the positive
(negative) intervals one by one with increasing |n| onto the positive even (odd) intervals
with correspondingly increasing labels. With 5, := 4™ one defines a (discrete) semigroup
of transformations on R such that the induced family of linear operators (®,), ®,p =
po, on V¢ is a semigroup of isomcetric stochastic maps. By Theorem 3.2 the stochastic
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maps &, are reversible; but (@,.),&H“ does not have an extension to a group since the ¢
cannot be extended to isometries on V.. So if one could construct a bijective stochastic
isometry © such that ©7'®,0 = &', one would have found an example of a reversible
dynamical semigroup which does not admit a group extension. The crucial point of this
example is that the underlying measure space is not finite, so that proper subsets of
are measure theoretically equivalent to Q itself. Redistribution operations such as ~ can
be applied, for instance, as a coding of the set R into (0, o0).

4.2 Damped Motion

As an example of a deterministic dynamical system that is not measure preserving we
consider the simple case of linearly damped motion of a particle in one dimension. Thus
the state of the particle at any time t is given by its position X (t) and velocity X (#),
that is, w = (X, X) € = R?. The dynamics is determined by the equation of motion
X = —xkX, &> 0, which is solved by

S (X0, X () = (X (1), X @) = (X (0)+ X (0) (1 —e™) , X (0)e™).

It is easy to verify that 57" = S_,, so that (S),eg is 2 group. But the latter maps, S_;, are
scen to solve the anti-damping equation X = +xX, which is obtained from the previous
one by application of the time inversion map @ : (X, X) s (X,AX). Accordingly. we
find that #-'S.0 # S;', which carries over in the corresponding inequality ©'®,0 #
@, ! for the induced stochastic semigroup, with all @, surjective stochastic isometries on
L' (2. B(®)). This confirms that the damped motion is irreversible, despite the fact
that a formal extension to a group is possible. A natural indicator of the irreversibility
{Lyapunov variable) is given by the magnitude of the velocity, |Y(t)| = |X(0)| e ™ which
tends monotonically to 0 as ¢ increases.

Damped motion of a particle can be viewed as a reduced description of a system con-
sisting of a very massive body suspended in a medium (gas or fluid) of molecules with
which it interacts via collisions. Despite the presence of the environment, the body per-
forms a deterministic motion whereas its energy is dissipated into the degrees of freedom
represented by the molecules of the medium (as well as increase of internal heat of the
body). The next example of Brownian motion belongs to the same physical class but the
body suspended in the medium is not as massive so that its motion is randomised due to
unobservable collisions with the surrounding molecules.

4.3 Brownian Motion

The random collisions determining the motion of a Brownian particle are modelled by
means of a stochastic differential equation for its position, X (t):

X =b(X) +o(X)E.

Here b(.X') describes a deterministic influence while the white noise term £ =  is given
as the time derivative of a Wiener process; o(.X) is the amplitude of the stochastic per-
turbation. As is well known, this stochastic process can be represented in terms of an
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associated Fokker-Planck (or Kolmogorov) equation for density functions p,(X),

o __pX)e] | 18[0?(X)p]

ot [7AN 2 oxX?
the solution of which (for sufficiently regnlar amplitude ¢( X)) is given by an eract semi-
group (P),.q; exactness meaning that ®,p converges in l-norm to a unique stationary
distribution p* [12]. This process is thus characterised by decreasing mixing distance
between any density p, and p°, in agreement with the fact that there exist Lyvapunov
variables indicating the irreversibility.

4.4 Instability

The preceding examples display irreversible behaviour of a system due to its interaction
with a (stationary) environment. An alternative type of situation is given by closed de-
terministic systems which are characterised by a degree of intrinsic instability. Thus it
is known that for the so-called K-systems there are dynamics-dependent coarse graiuings
under which the observable motion is described by a semigroup of strictly contractive
stochastic maps (e.g., [13]). Alternatively, a dynamical system (Sy),., is called intrin-
sically random if its associated group of stochastic isometries (@), is similar to a
semigroup of strictly contractive stochastic maps (&)‘)pn; this means that there is an
invertible stochastic map W™ whose inverse has dense domain and is not positive such
that @, = 1¥"®, 1"~ It has been shown that K-systems possess this property of intrinsic
randomness and that for them the irreversibility of the stochastic semigroup (&',) can

0
be indicated by some Lyapunov variables [13. 14].

4,5 Quantum Mechanics

One may consider the conjecture that the assertion made in Theorem 3.2 remains true even
beyond the scope of Theorem 2.3. This question shall be investigated in the context of
quantum mechanical measure cones for which Theorem 2.3 is known to be violated unless
the underlying Hilbert space is two-dimensional [15], see also the corresponding remarks
in [3]. Oune can construct quantum mechanical stochastic maps that are isometric and
reversible without being surjective but such that their inverse maps can be extended to
stochastic maps.

Let H denote a separable complex Hilbert space (with inner product {-|-) associated to a
quantum mechanical system. The ensuing me-space V' =V, is given by the Banach space
of selfadjoint trace class operators, with &' = K, representing the set of density operators.
The charge functional and 1-norm are given by the trace and trace norm, respectively.
The surjective isometries among the stochastic operators possess a particularly simnple
structure.

Proposition 4.3 Let V' be the me-space associated with a separable complex Hilbert space
H. A surjective stochastic map ® : V) — V, is an isometry if and only if it is induced by
g linear or antilinear isometry U : H — H such ®(z) = UzU* for z € 1.

This fact follows readily from the Wigner-Kadison characterisation of the automorphisms
of states or observables [16, 17]. We present a concise proof that makes nse of a result of
Davies [18].
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Proof. First, any ® defined as above in terms of some unitary or antiunitary U is a pos-
itive, trace-preserving map on 1,. This follows from the fact that U*U = I e(U2U") =
e(U*Uz) = e(z). the first equality being due to the invariance of the trace under cyclic per-
matations of the factors in its argument. Let z € V¥, then (p|UxU7p) = (U"p|2U"p) >0
for all ¢ € H; hence, ®(z) is positive, too. To verify the isometric nature of @, let
: = z; — 2_ be a minimal decomposition. It follows that 2z, - z— = 0 and therefore
Uz U Uz U = Ulzy -2 )U" = 0. Thus, ®(z;) and ®(z_) are orthogonal so that
®(z) = ®(zy) — ®(2-) is a minimal decomposition. Since @ is trace-preserving it follows
that [ = e(=,) + e(-) = |12

Next, let ¢ be a surjective isometric stochastic map. Then it is also injective. 1t fol-
lows that @ is a pure map sending pure (extremal) states to pure states: indeed, assume
7 € Ky is pure, let ®(z) = Ayy + (1 — A)y, for some 1,42 € K, and 0 < A < 1. Since @ is
surjective there exist x,, 25 € K, such that ®(z,) = 41, (x2) = y2. By the injectivity of
@, 1= Ary + (1 — A)ag, and due to the purity of z, x, = xy = 2; therefore y; = yp = y.
that is, y = ®{x) is pure, too. According to Theorem 2.3.1 of [18], ® is induced by a
unitary or antiunitary operator. O

If in the case of an infinite-dimensional Hilbert space the assumption of surjectivity is
dropped, then there exists a class of non-pure stochastic isometries which can be con-
structed as follows,

Proposition 4.4 Let H = Ho @ H, D He D - @ H,, be a direct sum decomposition of
H such that dimH, = o0, k = 1,2,---.n, 2 < n < oc. Let Uy : H — Hy be linear or
antilinear tsometries, 0 < wy <1, Y wy =1. Then

bV, o1, 2o B(2) = Y wlieUy, (11}

18 an tsometric stochastic map. Moreover, the following is a stochastic map whose restric-
tion to the range of ® coincides with the inverse of ®: Let Py, P, = UiUp denote the
orthogonal projections associated to the subspaces Ho, Hy, respectively.

n
Uy =V, 2 - 9z = ZU,:szPkUk + PyzPp. (12)

k=1

Proof. 1t is obvious that @ is a stochastic map. The isometric nature follows from the
fact that all the Ug(z4), Ui(z4) (for minimal decompositions z = 2, — z_ and k # [) are
mutually orthogonal, so that || 3 unU2Up ||y = L wgl|Uk2Uz |1 = ¥ wyll2]ly-

The positivity of ¥ is obvious. It follows from ¥}_g P = I that ¥ is trace-preserving.
Finally. for any element ®(z) one has P®(2)P; = wUx2U; and Py®(2)Fy = 0. This
immediately vields ¥ (®(z)) = ¥ uyz = 2.

The last result shows that isometric state transformations of the form (11) are indeed
reversible. 1t is known that all isometric stochastic maps on V; are of this form [19].
While the statement of Theorem 2.3 does not in general hold in quantum mechanics, the
last result entails that for pairs of quantum states, the relation (z',y') = (z,y) (subsection
2.2) is again svinmetric. Hence it is an equivalence relation and renders the relation J
a partial ordering on the ensuing equivalence classes. These classes contain as a subclass
those state pairs that can be connected with a surjective stochastic isometry. In the above
quantumn mechanical example it becomes apparent that this specific subclass is strictly
smaller than the original equivalence class. In fact, the surjective stochastic isometries are
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those induced by either unitary or antinnitary maps and hence always send pure states
to pure states. By contrast. the map (11) sends pure states to mixed states whenever
it is not. surjective. Thus a pair of image states cannot be sent to a pair of pure states
by means of a surjective stochastic isometry. The implication of this observation is that
non-surjective maps of the forin (11) cannot be interpreted as (discrete-time) reversible
dynamics: the maps (12) are not stochastic isometries themselves, so that requirement,
(10) of Definition 3.2 cannot be satisfied for a statistical dynamical system consisting
solely of stochastic isometries.

5 Conclusion

In this work we have reviewed the operational characterisation of irreversible dynamical
processes ancd have explored the possibility of an intrinisically geometrical indication of
reversibility or irreversibility. based on the fundamental concept of mixing distance intro-
duced by E. Ruch. We have reviewed this concept in the abstract language of statistical
dualities which provides a unified framework for classical and quantum statistical theories
and moreover brings out the essential geometric features.

[rreversibility of a single statistical state transformation is defined as the impossibility of
undoing the change of some pairs of states by application of another state transforma-
tion. It follows that a reversible stochastic map is necessarily an isometry. On the other
hand. stochastic isometries which are surjective are reversible. The conjecture is proposed
that all stochastic isometries are reversible. On the basis of the principle of decreasing
mixing distance (Theorem 2.3) this conjecture is verified for certain classical cases. An
explicit classification of quantum mechanical stochastic isometries yields the same result
for quantumn statistical systems. Hence reversible state transformations are necessarily
isometric, that is, they leave the mixing distance for state pairs invariant; but they are
not necessarily surjective.

The full physical content of the notion of reversibility cannot solely be represented as a
metric property involving the mixing distance; in addition one needs to make explicit the
notion of motion reversal, which involves a bijective isometric stochastic time inversion
map 0. Physically, reversibility means that it is the same dynamical map &, that leads
back to the initial state if applied to the motion-reverted final state:

T = Or = Oz - ©,00,r - 07'9,00,x = z.

This again entails that the inverse to @, is positive and charge-preserving on its domain
and hence a stochastic map; thus any reversible statistical dynamical system (®;) must be
composed of isometric stochastic maps. The possibility remains that reversible dynamics
may not in every case be given by surjective stochastic isometries. To summarise, invari-
ance of mixing distance is necessary for reversibility and decrease of mixing distance is an
indication of irreversibility. The power of the concept of mixing distance in the context of
classical statistical systems lics in the fact that its decrease provides a sufficient criterion
for the physical realisability of joint changes of state pairs as expressed in Theorem 2.3.
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