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Abstract

We consider partial ordering of folded structures using several
numerical techniques that have been developed previously. In particular we
consider a set of folded chains of equal length superimposed on the Cartesian
coordinate grid, their coding and subsequent ordering. For linear structures
we propose different codes which are used to derive partial orders for
structures.  Structure labels in partial orders obtained are subsequently
replaced by numerical parameters of individual structures in order to see if
there is some regularity in numerical data. In particular we considered
regularities for the leading eigenvalues of the D/D matrices and the leading
eigenvalues of the line-adjacency matrices selected folded curves. We have
also illustrated use of partial order in structure-property activity-

relationships.
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Introduction

Folded structures are of considerable interest in chemistry, physics and
mathematics. One of the central topics of biochemistry and molecular
biology concerns folding of proteins, relationship between molecular shape
and molecular structure. Besides the studies on the formation and the
mechanism behind protein folding, that may yield to a prediction of the
folding pattern for a known primary sequence of amino acids, of considerable
interest is characterization of the geometrical patterns of already folded
structures. In Fig. 1 we illustrate model proteins consisting of 27 units
(amino acids) considering by Tang and coworkers [1]. Characterization of this
model proteins received recently attention [2, 3. Each structure and each
pattern of folding can be described using structural invariants obtaining thus
characteristic “signature” for each folded system. As long as one uses a single
number to represent each structure the structure can be simply compared and
can always be fully ordered, excluding occurrence of numerical degeneracies.
However, when structure is represented by a sequence ordering of structures
requires more attention. Typically comparison of sequences leads to partial
order (4], different partial orders for different sequences.  Ordering of
structures is of interest as it may illuminate regularities in variations of
selected properties of structures. For example, one may consider the

computed folded model structures for proteins reported by Tang and
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Fig. 1 Model proteins consisting of 27 units (amino acids) considering

by Tang and coworkers [1].

R

N\

®

)




— 184 -

Fig. 2 The first 92 basis of B Globin Gene (having 1424 nucleic acids} as

depicted by a graphical representation of DNA by A. Nandy
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coworker [1]. Can these structures be ordered by some inherently structural
criterion that may reflect different degree of folding of each structure?

In Fig. 2 we illustrate the first 92 basis of  globin gene (having 1424
nucleic acids) as depicted by a graphical representation of DNA by A. Nandy
[5,6]. Here the four direction of coordinate system correspond to the four
nucleic acids: A and G along + x axis and C and T along + y axis. The
problem again is that of numerical characterization of folded curves, which
as we see from Fig. 2 may also overlapping itself. Different DNA primary
sequences will have different pattern of folding. ~Moreover, alternative
graphical representations may yield a variety of distinct graphical forms for
the same primary sequence of DNA, Recently a 3-dimensional
representation of DNA was considered [7] in which the four directions
assigned to the four nucleic bases are the directions pointing from the center
to the four vertices of a regular tetrahedron. An advantage of this approach
is that the four directions assigned to nucleic bases are fully equivalent and no
proeference is given to specific pairings, such as A-G and C-T. In Fig. 3
we show the construction of the initial steps of the 3-dimensional
representation of the same DNA shown in Fig. 2 as a 2-dimensional graphical
diagram. It was interesting to find that when the 3-D spatial curve of Fig. 3 is
projected on the (x, y) coordinate plane one obtains as the projection precisely
to folded curve of Nandy shown in Fig. 2. The problem to consider, of
course, is finding structural criteria that would result in ordering of

structures in some logical way, and particularly ordering of structures that
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would parallel some of their known properties.

The conformations of normal alkane chains, that is, the
conformations of chains of n carbon atoms on a 3D diamond lattice, also
illustrate systems showing various degree of folding. The same is the case
with the corresponding problem in 2D, the conformations of chains of n
atoms on a graphite lattice. The nine conformers of 7-carbon atom chains
superimposed on a graphite lattice and the 18 conformers of 8-carbon atom
superimposed on a graphite lattice chains are illustrated in Fig. 4 and Fig. 5,
respectively. The corresponding “degree of folding,” outlined in ref. [8] and
ref. [9], to be discussed later at some length, are also shown under each
structure. The numerical values for the “degree of folding” are such that the
extreme values “1” and “0” correspond to a straight chain (unfolded
structure) and a hypothetical “mostly folded structure,” respectively. Hence,
the smaller values of the “degree of folding” belong to structures that are
more folded. The “degree of folding” as defined is, in fact, a measure of the
departure of a chain structure embedded in a space from a straight line form.
Thus TTTT (the first structure of Fig. 4) is less folded than TTTC (the second
structure in Fig. 4). Here T and C indicate three successive carbon-carbon
bonds in trans and cis configurations, respectively. The numbers displayed
in Fig. 4 and Fig. 5 under each structure appear plausible and support the
interpretation of these numbers as a particular measure of the folding or the
bending of chain structures. ~Not only the folding index is useful when

comparing structures of the same size but it allows also comparison of
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Fig. 4 The nine conformer of 7-carbon atom chains superimposed on a
graphite lattice. The numbers displayed in under each structure
are the leading eigenvalues of D/Dmatrices and represent a

measure of folding of chain structures
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Fig. 5 The 18 conformer of 8-carbon atom chains superimposed on a
graphite lattice. The numbers displayed in under each structure
are the leading eigenvalues of D/Dmatrices and represent a

measure of folding of chain structures
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structures of different size. Thus we find that TTTTT (the first structure in
Fig. 5) is to be viewed less folded than TTTT (the first structure in Fig. 4) and
this also appears plausible, because in the limit an all trans chain will
approaches a straight line in its appearance. Complete order, that is ordering
of the structures sequentially (i. e, “1-dimensionally”) is not necessarily
revealing underlying structural components that may critically influence the
magnitudes of various molecular properties. Can we arrive at partial order
for such structures?

Fig. 6 shows several mathematical curves representing initial stages of
construction of fractals illustrating different patterns of folding. Numerical
characterizations of such curves, which one considers when having
particular property in mind, are of some interest [10-18].  Additional
mathematical curves are depicted in Fig. 7. By visual inspection qualitatively
one can say that double spiral (Fig. 6 a) is more folded than simple spiral (Fig.
6b), and that both of them are less folded than the dragon curve (Fig. 6 c).
However, without a quantitative characterization it may be difficult, or at
least somewhat ambiguous, to claim that the degree of folding of the worm
curve (Fig. 6 d) is in between that of a spiral and double spiral. On the other
hand, given the numerical values of a property, like the “degree of folding,”
considered here one can completely order these mathematical curves.
However, just as was in the case of 7-carbon atom chains and 8-carbon atom

chains, the complete (1-dimensional) ordering will not illuminate inherent
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Fig. 6 Initial stages of several fractals: (a) Hilbert curve; (b) Koch’'s

curve; (c) Sierpinski arrow
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Fig. 7 Mathematical curves: (a) double spiral; (b) simple spiral; (c)

the dragon curve; (d) the worm curve
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structural components that contribute to the selected fractal property.

In this article we will consider problems related to ordering of folded
structures, that may be of mathematical, chemical, or physical origin. We
have selected relatively simple folded curves of Fig. 8 to outline a particular
mathematical analysis suitable for such cases.  Although the outlined
approach for this particular example need not be readily applicable to other
situations it is hoped that the underlying reasoning may nevertheless be of

more general interest and applicability.

Simply Folded 2D Mathematical curves

The folded curves of Fig. 8, labeled by letters from A - Q, represent all
possible cases of folded curves confined to 4 x 4 Cartesian block (hence
involving 16 points with integer coordinates) constrained so that the four
first points form the baseline. Hence, all curves of Fig. 8 start with a straight
line segment given by four point, the first point being at the left lower corner
of a4 x 4 block. We selected these folded curves because of their relatively
limited number (17 in all), while they apparently display fairly diverse forms
of the folding. The curve A represents the initial stage of a spiral, the curve
D corresponds to the initial stage of a double spiral, while the curve L
represents a simple stepwise folding. Among the 17 folded curves of Fig. 8
curve L is the only case that has some symmetry (horizontal plane of

reflection).  Other folded curves have no apparent interpretation, but a
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The folded curves, labeled by letters from A - Q representing all

possible cases of curves confined to 4x4 block of Cartesian

coordinate systems
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collection as a whole exhibits different folding patterns and represents a small
library of mathematical “fingerprinting” of possible folded curves. Observe
that curves C, G and M have the same peripheral contour (that of letter L)
and differ only by the site at which the “missing” link, that would close the
curve occurs. As we will see later all these folded curves are associated with
different values for the calculated “degree of folding,” pointing to the
sensitivity of the adopted measure of folding, which is given by the leading
eigenvalue of the so called D/Dmatrix of a structure [8].

Immediately the question arises: How do we know that these are all
the possible structures under the specified constraints? The answer follows
from the use of an algorithm for generating such structures to derives such
structure. In Fig. 9 we illustrate the beginning of the construction. We start
from the origin (0, 0) with line involving the first four points (0, 0), (1, 0), (2,
0), (3,0). The next point has to be (4, 1) as there are no other alternatives to
continue the “growing” of the line. Now there are two possibilities: either
we link point (4, 2) to (4, 1) or we link the point (3, 1) to (4, 1) as shown in Fig.
9, which illustrates also the next step that includes the available nearest
neighbor points of (4, 2) and (3, 1), respectively. We will not elaborate here
the particular construction algorithm which can be applied also to larger
curves, and to curves without constraints used here. Observe, however,
how the constraints (e. g, curves are restricted to a 4 x 4 block) limit explosive
combinatorial growth of possible cases. For example, after the fourth step

(the last step completely illustrated in Fig. 9) in one case we can continue
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construction because there is but a single choice for added line. In additional
two cases we could even complete the construction because at successive steps
there was but a single choice for addition of next line segment. As we see at
this early stages of the construction one can also detect unproductive
constructions, indicated as NP (not possible), that do not yield folded curve
subject to the constraints selected.

Below we give the count of the folded curves on Cartesian grids of
increasing size to illustrate fast growth of possible forms. The first count
refer to folded curves constrained so that they start with the base line of the
size of the grid, and the second count gives all possible forms. Only

symmetry non-equivalent folding forms were counted.

Grid size I1x1 2x2 3x3 3x4
Restricted 1 3 17 127
Unrestricted 1 3 23 282

The next question to consider is that of developing a code for such
structures and subsequent characterization of such folded systems. Codes
should be distinguished from characterization: A code depends on a
convention adopted, which may presume some rule for labeling of vertices.
On the other hand a characterization is independent of atomic labels.
Characterization is based on mathematical properties of a structure, just as
properties, such as the boiling points, the heats of formation, the entropy,

the density, or the molar refraction offer a physicochemical characterization



— 98—

of molecules, such as alkanes. For example, for the folded structure A we
can write a code: 3,3, 3,2, 2, 1,1 which indicates (starting with the point at
the origin) the lengths of the consecutive segments as the curve is folded. In
contrast, we may consider a characterization based on the length of
consecutive segments, such as the sequence: 3, 2, 2 which tells that there are
three segments of length 3, two segments of length 2, and two segments of
length 1. Construction of the sequence 3, 2, 2 is independent of atomic labels.
That is, it does not matter whether we start counting the segments from the
“beginning” or from the “end” of the structure. Clearly, there is loss of
information when characterization 3, 2, 2 is considered. In listing only the
size of segments and their number we have lost information on the
connectivity between the segments. On the other hand from the code, the
sequence 3,3,3,2 2, 1,1, one can reconstruct the shape of the folded curve
completely. A good code is characterized by no loss of information, which
means that reconstruction is possible, even if not straightforward and require

testing alternative possibilities for feasibility.

Partial order

In Table 1 (the left column) we have listed for the 17 folded curves of
Fig. 8 the segment-length codes defined in the previous section.  The
structures have been ordered lexicographically, that is by the magnitude of

the entries in their sequence code. If the sequential entries in two sequences
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Table 1 Codes for the 17 folded curves of Fig. 8

Segment-length code Partial Sums

A 3332211 3,6, 9 11, 13, 14, 15, 15, 15, 15, 15
B 33113 2.3, 1,1 3,69 11, 12, 13, 14, 15,15, 15, 15
¢ 3:38,1,27% 2 3,69 10, 12, 13, 15, 15, 15, 15, 15
D 3321112 3,6 89 10, 11, 13, 15, 15, 15, 15
E 3,31,2221,1 3,6 7,9 11, 13, 14, 15, 15, 15, 15
F 33221151, 1 3,679 11, 12, 13, 14, 15, 15, 15
G 33121212 3,679 10, 12, 13, 15, 15, 15, 15
H 33111122 3,67 8 9 10, 11, 13, 15, 15, 15

I 31,323, 1,2 3,4,7,9 12,13, 15, 15, 15, 15, 15
] 31,321,121,1 3, 4,7, 9 10, 11, 13, 14, 15, 15, 15
K 31,3%2%11,111 3, 4,79 10, 11, 12, 13, 14, 15, 15
L 31.,31313 3,47 8 11, 12, 15, 15, 15, 15, 15
M 31212132 3,4,6,7, 9 10, 13, 15, 15, 15, 15
N 3111113211 3,4,56,7 8 11, 13, 14, 15, 15

0 31L1LLLL3L1L1L1 345678 11,12 13, 14, 15

P 31551812219 3,456 7 8 10, 12, 13, 15, 15

Q 31,1,1,1,1,1,23 1 3,45 6,7 89 11, 14, 15, 15
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are the same, comparison is shifted to the next entry in the sequence until
difference occurs. The column at the right side of Table 1 shows partial sums,
S,, Sy Sy Sy ... that are defined as the sequence: s, = a, S, =a, + a, s;=a, +
a,+a, s,=aj+a,+a,+a, ... Todetermine the dominance and the partial
order for a set of sequences (such as those of Table 1), according to Muirhead
(19], one compares the sequences of the corresponding partial sums. We will
assume that the sequences to be compared are of the same length. When this
is not the case one can make sequences to satisfy this requirement by adding
as many zeros at the end of the sequence as necessary. Thus, for example,
the sequence A is augmented into 3,3, 3, 2,2,1,1,0,0,0,0in order to have the
same length as the longest sequence of Fig. 8 (the sequence Oof Table 1). We
have left the sequences of segments in their original form, that is without
listing of the additional zeros at the end (shown on the left in Table 1) but the
sequences of the constructed partial sums (shown on the right in Table 1) are
augmented so to be of the same length. If for two structures A (a) and B (b))
the following inequalities hold:
a, 2 b,
a,+a, 2b +b,
a, +a,+a, =2 b, +b, + b,

ata,+a,+...+a =b+b,+b+ ... +b,

then we say that A dominates B. If any of the inequalities would not be

satisfied the two structures are said not to be comparable. This means that



neither A dominates would B nor B would dominates A. Two structures
that are not comparable can nevertheless be dominated by a third structure,
or can dominate a third structure.

In Fig. 10 we show the resulting partial order for the 17 structures of
Fig. 8. As we see A dominates all the remaining structures, while structure
C also dominates all the structures except B with which it is not comparable
(and of course A, by which it is dominated). The segment of the graph
depicting the partial order from structure A to structure N represents a lattice.
Lattice is defined as a partial order characterized by a single dominant
structure (the so-called master) and a single structure dominated by all (the so
called slave). However, when we consider all 17 structures we have a semi-
lattice: There is a dominant master structure, but at the bottom instead of a
single slave structure dominated by all there are two structures, O and Q
which are not comparable.

There is no unique graphical representation of the partial order. The
diagram shown in Fig. 9 is selected for its relative simplicity. One tries as
much as possible to avoid unnecessary crossing of lines in such diagrams.
Once a diagram is drawn one can modify it by shifting vertices of the diagram
at will as long as the dominance (the vertical relationship) is not affected. In
other words, two diagrams representing a partial order are equivalent if
along each path in the both diagrams the same sequence of structures are

obtained.
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Fig. 10 The resulting partial order for the 17 structures of Fig. 7 based on

partial sums of Table 1
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Alternative Codes

The codes of Table 1 represent list of segments of the folded curve
starting with the longer segment first. If we reverse the ordering rule and
start by listing the smaller terminal segment first we obtain the codes listed in
Table 2 (left column). As we see these codes lead to a different sequences of
partial sums (shown in the right column of Table 2) and result in a
completely different partial order (shown in Fig. 11).

Let us consider yet another code for the folded structures of Fig. 8.
Again we will start with the point (0, 0) to which we assign label zero. We
proceed sequentially along the folded line listing either 0 or 1 to each integer
coordinate point, depending on the orientation of the line relative to the
previous point. If the line maintains the direction we write one, if it changes
the direction, up or down, left or right, that is the point is the site of a
“kink,” we write 0. This definition gives for the structure A of Fig. 8 the
following sequence:

61,1011,01101,01000
By convention we will assigned label 0 to the last point in the curve. In
contrast to sequences derived from the codes based on the list of segment
lengths, which may have different lengths, here all the codes have the same
length, which is determined by the number of vertices involved. We will

refer to this as the “line/kink” codes.



Table 2 Codes for the 17 folded curves of Fig. 8 starting with the smallest

segments first

Structure  Segment-length code

e 3,131,313
M 2,381,212 1,3

D 2,21,11233

N 2.2L11,233

I 2,1,3231,3

P 21,221,111,

c 2,.1.2,1.3 3.5

G 2,1,212133

Q 182 T, 51,4,

N 112,82 11,1, 1.1, 8
A 1,1,22333

E 1,1.2.%%1,8.5

J 1,1,211,231,

o O O O P I T

B 1. 51.4,29.358

F LA, 0,200, 1,8

K LLLLL1208,

0

1, 3

Partial Sums

3,4,7 8 11,12, 15

2,5 68911, 12, 15
2,456,7,9 12,15
2,45 6,7,8 9,12, 15
2,368 11,12, 15
2,3572891011 12, 15
2,356,912, 15
2,356,849 12 15

1, 46789 10, 11, 12, 15
1,2 478910, 11, 12, 15
1,2 4,69 12, 15

1,2 4,689 12, 15

1,2 45,6, 8 11, 12, 15
1,234,789 10, 11, 12, 15
1,23 46,9, 12, 15

1,2 3 46,89 12, 15

1,23 4.5 6,8 11, 12, 15
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Fig. 11 The resulting partial order for the 17 structures of Fig. 8

based on partial sums of Table 2
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As an alternative we could have considered the complement of the

above code:
1,00 1,0,0,1,0,0,1,0,1,0,1, 1, 1

obtained by reversing the assignment of zeros and ones. We dedided to stay
with the first choice mentioned so that the structure A is the dominant
structure. In Table 3 we listed the “line/kink” codes for all the 17 folded
curves of Fig. 8.

It is interesting to observe that the ordering of the curves A - Qin Table
3 agree completely with the ordering of the same curves as given of Table 1.
Both codes follow the same lexical ordering. Moreover, when the
dominance relations between the new codes are examined they produce
identical relations to those derived from the segment/length codes of Table 1.
Hence, Fig. 10 illustrates also the partial order also for the line/kink codes of
Table 3, as well as for segment/length codes of Table 1. A close look at the
two codes reveals that they are simply related, and that one code can be
transformed easily into the other. For example, consider again the line/kink
code for structure A:

%1,1401140110101000
which can be also written briefly as a single binary number:
0110110110101000.

The zeros in this code indicate vertices where “kink” occurs, or where a new
line segment begins. Hence, in order to get segment/length code from the

line/kink code we first add the entries between adjacent zeros to obtain: 2, 2, 2,



Table 3

Structure
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The “line/kink” codes for the 17 folded curves of Fig. 8

Line/kink code

0110110110101000
0110110110100000
0110110110010010
0110110100001010
0110110010101000
0110110010100000
0110110010010010
0110110000010100
0110011010110010
0110011010001000
0110011010000000
0110011001100110
0110010010011010
0110000001101000
0110000001100000
0110000001010010

0110000000101100

Partial Sums

0,1,2,234,45,6,6,7,7,828,8,8
0,1,2,23,4,4,56,67,7,7,77,7
0,1,2,234,4,5,6,6,6,7,7,7,8,8
0,1,2234,45,55,556,67,7
0,1,223,4,4,4,55,6,6,7,7,7,7
0,1,2234,44,55,6,6,6,6,6,6
0,1,2234,44,55,5,6,66,7,7
0,1,223,44444,45,56,6,6
0,1,2223,44,556,7,7,7,8,8
0,1,2223,445,5556,66,6
0,1,2223,445,5,5,55,55,5
0,1,2,223,44,4,5,6,6,6,7,8,8
0,1,2,2233344456,677
0,1,22222223,445,5,5,5
0.1,2,2222223,4,4,44,4,4
0,1,2222222,3,3,4,4,4,5,5

0,1,222222,22,33,4,5,5,5



-— 208 ~-

1,1,0,0,0. Then we add +1, to each entry to acknowledge the initial the
initial vertex of each segment. Thus, instead of 2,2,2, 1,1, 0,0, 0 we obtain
3,3,3,2,2,1, 1,1, which is the segment/length code for A in Table 1. Hence,
one can view the line/kink codes of Table 3 a binary version of the
segment/ length codes.

The so called “line/kink” code does not contain complete information
for reconstruction of the structure. It could be changed just a bit. Instead of
using 0, 1 consider use of labels S, R and L for straight, the right and the left,
respectively. With such choice one would obtain SRL code that preserves the
relevant information on the direction of the kinks. If one chooses numerical
values for SRL code: S=1, R =0, L=0, the line/kink code is obtained. The
SRL code is reminiscent of the 0, £+ 1 codes for conformations of n-alkanes
embedded on a diamond grid that lead to an interesting graphical
formulation for enumeration of n-alkane conformers [20].

Before closing this section let us mention that the rules of Muirhead
for the construction of sequences of partial sums can be modified. Ruch [21-
23] for example, while maintaining the inequalities as formulated by
Muirhead has changed the condition on the last partial sum. Instead of
requesting that the last partial sums are related by equality according to Ruch
the equation is replaced by the inequality:

a+a,+a,+...+a z2b+b,+b;+ ... +b,
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Another generalization of Muirhead inequalities outlined by one of the
present authors considers a repeated use of the partial sums to resolve cases of
non comparability of sequences [24]. Thus starting with
s, 2t
S+, 2k + ¢t
S5+ 2+ i+t

S+ +8+ ...t = bt ..+t
where
s, =a t,=b
s,=a, +a, and t,=b+b,
s;=a,+a,+a, t;=b +b+b;

by substituting the partial sums at each step back into the initial set of the
inequalities one obtains:
a, zb,
2a,+a, 22b,+b,
3a,+ 2a,+ a, 23b,+2b,+ b,

na, + (n-1)a, + (n-2)a, + . . . +a, = nb + (n-1)b,+ (n-2)b,+ . . . +b
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By repeating the process again and again greater weights are obtained for the
initial members of the sequences under comparison. In the following step
we have:
a, =2 b
3a,+a, 2 3b,+b,
6a,+ 3a,+a, = 6b, +3b,+ b,

and so on. One could generalize even the above procedure by introducing
general (non integer) weights w,, w,, w,, ... (which may even be members
of yet another sequence). We will in this article, however, use the partial

ordering rules as defined by Muirhead.

Discussion

Different codes may lead to different partial ordering of the same set of
structures. This has been already illustrated by Fig. 10 and Fig. 11, both of
which show partial orders for the same 17 folded curves of Fig. 8. So how
should one choose codes, or select one partial order over another? The
situation is reminiscent of the situation characterizing consideration of
molecular similarity [25, 26]. The same set of structures will yield a distinct
similarity / dissimilarity table, depending on the set of invariants used for
characterization of structures. Each such result is legitimate as any other, but

depending on the application one set of descriptors may be found more useful
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for some structure-property studies, the other may be of interest when
different properties, or different structures are considered. Moreover, even
when the same set of descriptors is wused the entries of a
similarity / dissimilarity table may very strongly depend on whether we used
an orthogonalized set of descriptors or the descriptors remain interrelated [27-

31].

Ordering of physicochemical properties of alkanes

Partial order, such as shown in Fig. 10 and Fig. 11 may be thought of as
a “mathematical game.” They become of interest in chemistry if they relate
to questions and problems of chemical significance. That indeed they play an
important role in discussions of isomeric variations has been shown by
Randic and Wilkins {30-32). For instance, if for octane isomers we correlate
the paths of length three against the paths of length two we obtain the
diagram shown in Fig. 12. Such diagrams have been introduce by Randic and
Wilkins (32-34] to point to regularities in isomeric variations of selected
properties of alkanes. For example, the boiling point, the critical density,
the critical pressure, and the molar magnetic susceptibility show the (+, +)
trend, that its, they increase with increase of p, and p,. On the other hand
the specific dispersion, the molar volumes, and chemical shift sums show
the (+, -) trend, while the surface tension, the heat of combustion and the

critical temperature have the reverse trend (-, +). The critical volume of
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Fig. 12 Correlation for octane isomers of the paths of length three

against paths of length two
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octane was the only physicochemical property of a dozen considered that
showed the (-, -) trend.

Applications of the partial order to molecular properties {35-40] showed
that (p,, p;) coordinate system plays a role of displaying regular behavior of
property of isomers and can be referred to as the Periodic Table of [somer in
analogy to the Periodic Table of Elements that displays regularities in

variations of atomic properties.

Search for pharmacophore

Another illustration of use of partial order relates to search for
pharmacophore.  Pharmacophore is thought to be a group of atoms in a
biologically active compound (not necessarily being connected and forming a
fragment) believed to be responsible for its activity. In many situations
molecule were found active even though identification of the atoms believed
to play crucial role may be unknown. Hence, it is of considerable interest to
identify pharmacophore. One way to such identification has been illustrated
some time ago on nitrosamines (17, 41]. Among dozen mutagenic
compounds illustrated in Fig. 13, the compounds labeled as A and B were
reported to be the most potent. A glance at Fig. 13 does not reveal unusual
structural features present in the most active compounds and absent in other
less potent compounds.  Seemingly all the compounds of Fig. 13 are

reasonably similar, but as can be seen from their mutagenicities they show



enormous variation in their bio-activity. The difference between the most
potent and the least potent compound is almost three orders in magnitude.
How can we understand the enormous differences (three orders of
magnitude) in the potency among all the dozen seemingly similar structures?

A way to attack this problem is first to introduce mathematical
characterization of the structures and subsequently compare such
characterizations, for a whole molecule, or only relevant parts, rather then
comparing chemical structures. For example, if the structures are
characterized by (weighted) path numbers one can compare derived path
sequences. This is the approach outlined in ref. [41]. First one takes A and B
as the standard compounds (being the most mutagenic) to which other are
compared will be compared. However, rather than comparing the whole
sequence for different compounds, what one would do if one is interested in
the overall similarity among the compounds, one selects a fragment present
in all compounds and consider mutual similarities for so selected fragments.
As a measure of similarity one can use the Euclidean distance in n-
dimensional structure space by considering the characterization of
compounds by weighted path sequences as the representation of the
structures by n-dimensional vectors. The relative degree of the
similarity / dissimilarity will depend on the fragment selected and used for a
comparison. In Fig. 14 and Fig. 15 we illustrate the partial orders derived
when one uses a six or a seven atom molecular fragments. The

corresponding molecular fragments are shown at the bottom of Fig 14 and
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Fig. 13 Mutagenic compounds listed in Table 4 and a six and a seven

atom molecular fragments used for measuring similarity
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Fig. 14 Ordering of nitrosamines based on similarity towards A and B

using information on six atom fragments only
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Fig. 15 Ordering of nitrosamines based on similarity towards A and B

using information on seven atom fragments only
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Fig. 15, respectively. In the next step one replaces the labels for structures by
the numerical values of mutagenicity of a structure. In this way we obtain a
numerical diagram which may or need not conform with the dominance
hierarchy found for the structures. We have indicated by a thick lines local
inconsistencies, i. e., the local situations in which there is a reversal of the
relative magnitudes for the mutagenicities for the neighboring compounds.
Ideally we would like to see diagram of partial order without numerical
inconsistencies, that is, without the thick lines. As we see in the case of Fig.
14 there are several major inconstancies. In particular compounds Cis below
E and H, both of which show considerably lesser mutagenicities. On the
other hand there is no major inconsistency with Fig. 15. It is true that the
compounds D is above the compounds C, but their mutagenicities are not so
different as was the case with the compound D and E, H of Fig. 14. If we
ignore the less important parts of the diagrams concerning the compounds of
low activity, we see that in the case of the six-atom fragment we have serious
contradictions but these disappear when the seven atom fragment is
considered as pharmacophore. Hence, we conclude that the seven atom
fragment much better characterize relative mutagenicities and can therefore
be considered the sought pharmacophore for the mutagenicity of
nirtosamines.

A convenient way to arrive at the diagrams for partial orders
illustrated in Fig. 14 and Fig. 15 is illustrated at the left part of each figure.

Nitrosamines are ordered in two columns relative to the calculated similarity
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with respect to A and B based on considered fragments when only six (Fog. 14)
or seven atom-fragment (Fig. 15) is considered as pharmacophore. 1-
Dimensional order of compounds based on their similarity with respect to a
single compound, A and B, are different for the six and the seven atom
fragments. From the two 1-dimensional orders that hold for both A and B
separately one has to extract the partial order. The partial order incorporates
all local ordering of the compounds that satisfy the ordering that holds for A
and B considered separately. Typically a partial order is represented in a form
of an oriented diagram such that paths in such diagram simultaneously
satisfy the relative orders for the compounds when both A and B are selected
as the leading standard compound. Each crossing of lines between the same
label in the two columns at the left parts of both Fig. 14 and Fig. 15 indicates
structures that are not comparable.

We hope that the case discussed well illustrates the importance of the
partial order for structure-property-activity studies. Additional similar
application of partial ordering in QSAR (the quantitative structure-activity
relationship) have been published {42-44] including modeling the
mutagenicity of nitroarenes [42], and modeling of the antiviral activity of
substituted benzimidazoles [44]. Before leaving this aspects of applications of
partial orders in structure-property-activity studies we would like to point out
to those interested in constructions of partial orders that importance of such
diagrams, which we hope will increase and which we feel deserves wide

publicity, lies in rationalization of experimental data. Mere diagrams of a
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partial order for set of structures would be of limited interest per se without
subsequent application.  There is some parallelism here with a similar
situation in designing or searching for novel topological indices. Without a
clear demonstration of some advantages of novel descriptors over the
existing indices, such efforts are likely to remain unappreciated, and rightly

so, because they are of no consequence for chemistry.

Folding and the Degree of Folding

In this section we will illustrate use of the partial order illustrated in
Fig. 10 on selected mathematical properties of the folded curves of Fig. 8.
Quantitative measure of folding, an index of the “degree of folding,” has
been suggested by Randic, Kleiner and DeAlba [8]. The index is defined as a
normalized leading eigenvalue of the so called D/D matrix of a structure.
The leading eigenvalue is the largest positive eigenvalue of a matrix. The
matrix elements of D/D matrix are defined as the quotient of the Euclidean
distance between points (i, j) and the graph theoretical distance between the
same points. In Table 4 we show D/D matrix for structure A of Fig. 8. The
vertices for each structure are labeled starting with 1 at the origin (0, 0) and
ending with 16 at the end of the folded curve. The leading eigenvalues A, of

the D/D matrices for structures A - Q are listed in Table 5 (the left column)

together with normalized eigenvalues A /16 which gives “the degree of
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Structure
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folding” (the central column). The normalization is particularly important
when one wants to compare the degrees of folding in curves of different size.
In Fig. 16 we show again the partial order already depicted in Fig. 9,

except that instead of using the labels A-Q for the structures we replaced each

label by the numerical value of the computed leading eigenvalue A, for the

structure. We see the X,/ n decreases from the top of the figure towards the
bottom along the lines of the diagram, with few, but minor, exceptions. The

few discrepancies that occurred concern a somewhat “higher” value of A, for

Hand N, and possibly somewhat low value of A, for structure G. The partial

ordering, just as a correlation, may have occasional “outlier.” Nevertheless,
we may conclude that an “agreement” between the prescribed partial order of
Fig. 9 and the “experimental” order shown in Fig. 16 may be viewed as very
satisfactory. Hence, the segment length clearly play a dominant role in
determining some properties of the folded curves. However, the minor
discrepancies equally point to possible role of factors that the adopted code
does not register. One such factor may be the end-to-end distance of a curve.
Other features being similar, structures that have the end vertices adjacent,
or at smaller separations, will appear more folded than the similar structures
with the end points at larger separations. Hence, more elaborate coding that
would incorporate such additional structural elements may possibly result in
even better agreement between the “calculated” and the “experimental”

partial orders for the considered property.
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Fig. 16 The partial order of Fig. 10 with the “degree of folding” values

inserted for each structure
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Line Adjacency

As another property of the folded curves of Fig. 8 we will consider the
leading eigenvalue A, of their “line adjacency” matrix. In order to
differentiate this leading eigenvalue from the already considered leading
eigenvalue of D/Dmatrices we will denote it as ,*. The concept of the line-
adjacency has arisen in studies of D*/D* matrices when one considers the
limit matrix elements as k tends to infinity {2, 9, 41]. Here D*/D* is matrix
derived from the elements of D/D matrix by raising each element of the
matrix to the power k. Since all the elements of the D/D matrix are smaller
than 1, or at most equal to 1, it follows that as k tends to infinity all the
elements that are smaller than one will become zero in the limit, while those
that are equal to 1 remain intact. The resulting matrix can be geometrically
interpreted as showing “line-adjacency,” that is, its elements are equal to 1
whenever vertices lie on aline. In Table 6 we show the line adjacency matrix
for the folded structure A of Fig. 8.

The line-adjacency matrix is of interest in numerical characterization
of DNA primary sequences {46]. The leading eigenvalue of such matrices is
an invariant closely related to the measure of the degree of folding of such
structures. So we decided to calculate the leading eigenvalue A" of line-
adjacency matrices which are listed in Table 5 (the right column). In Fig. 17
we superimposed the line-adjacency leading eigenvalues on the partial order

of Fig. 9. As we can see again a very satisfactory ordering was obtained. In
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Fig. 17 The partial order of Fig. 6 with the leading eigenvalues of the

line-adjacency matrices inserted for each structure
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this instance there is not a single, even minor, discrepancy in relative
positioning of the numbers in the diagram! Hence, the leading eigenvalue
of the line-adjacency fully parallels the ordering based on segment/length of a
folded curve. We may mention that the leading eigenvalue of the line-
adjacency matrices were interpreted in one particular chemical application as
an index of molecular flexibility [9]. In Fig. 17 we show the embedded line
graphs for the 18 structures of Fig. 4 and their “flexibility” indices, merely to
illustrate that despite some parallelism between the ‘folding” and the
“flexibility” indices, there are also important differences between them.
Hence, the line adjacency matrix, which is in mathematical literature known
as the adjacency matrix of a “Menger graph of a configuration” [47], may have

wider applications in chemistry.
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