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Abstract

Extending an earlier study [21], in which chemical trees with smallest, second-
smallest and third-smallest connectivity indices were determined, we now solve the
analogous problem for general molecular graphs, possessing n vertices and m edges,
n—1< m< 2n, representing hydrocarbons without any multiple bonds.

Dedicated to Professor Milan Randié¢
on the occasion of the 25th anniversary
of his invention of the connectivity index

1. INTRODUCTION

In 1975 Randi¢ [1] introduced a novel graph invariant, aimed at being a measure
of what intuitively is considered as the branching of the carbon-atom skeleton of
an organic molecule. He called this invariant the branching indez, but later it was
renamed into connectivity indez (2, 3] or Randi¢ indez [4, 5), and is usually denoted
by . Randié¢ himself [1] established correlations between y and scores of physico-

chemical properties of alkanes: boiling point, the Kovats chromatographic index.



enthalpy of formation, parameters in the Antoine equation for vapor pressure, surface
area. solubility in water. Randic’s article [1] was followed by almost countless QSPR
and QSAR applications, making x one of the most popular molecular structure-
descriptors for predicting physico—chemical and, especially, pharmacologic properties
of organic compounds [2, 3, 6]. For some of the most recent studies along these lines
see [7]-[13].

Within classes of isomers, with increasing branching of the carbon-atom skeleton,
the value of the connectivity index decreases. Thus, adopting Randi¢’s original view-
point. molecules possessing the smallest possible value of the connectivity index may
be considered as being maximally branched. If so, then in this work we determine
these maximally branched molecular systems.

The graph representation of the carbon-atom skeleton of an organic molecule
(or more precisely: of a hydrocarbon without any multiple bonds) - the so-called
molecular graph — is a connected graph whose all vertices have degrees four or less
(4. 14]). If G is such a graph and &(v) is the degree of its vertex v, then the connectivity
index of G is defined as [1]

1
0 . - .
x=x(6):=2 () 8(0)

with the summation ranging over all pairs of adjacent vertices, that is over all edges
of the graph G .

Needless to say the above definition is not restricted to molecular graphs, but is
applicable to all graphs, both connected and disconnected.

For some time the connectivity index is atiracting the attention of mathemati-
cians, who established a few of its fundamental mathematical properties. Fajtlowicz
[13] and Araujo & de la Pena [16] characterized the n-vertex graphs with greatest
\-value: These are the graphs without isolated vertices in which each component is a
regular graph; for all such graphs x = n/2. Bollobas & Erdés [17] proved that among
n-vertex graphs without isolated vertices, the star has the smallest x-value, equal to
Vit = 1. Hansen et al. showed [18] that amoeng n-vertex trees the path graph has
greatest \-value, equal to (n — 3)/24v/2 . n > 3. Several lower and upper bounds

for the connectivity index were reported [16, 19, 20].
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In a recent work [18] a linear—programming method has been developed by means
of which acyclic molecular graphs (with a fixed number of vertices), with smallest
and greatest connectivity indices could be characterized. A proper extension of this
method enabled also the characterization of acyclic molecular graphs with the second-
smallest. third—smallest, greatest, second-greatest and third-greatest x [21].

In this work we continue these studies for multi-cyclic graphs (with up to n/2
independent cycles), and for the n-vertex unicyclic case find molecular graphs with
the three smallest x-values, hence the three most branched families of molecular

graphs.

2. THE METHOD

In what follows the molecular graph considered will be denoted by G, and the
number of its vertices and edges by n and m , respectively. Sometimes we say that G
is an (n.m)-molecular graph.

Denote by z;; the number of edges uv of G, for which §(u) = i and §(v) = ;.
Then

G) = S
X( ) 15%54\/;7 (1)

Note that xy; = 0 whenever n > 3, and therefore the case i = j = 1 needs not
be considered any further. Consequently, the right-hand side of Eq. (1) is a linear

function of the following nine variables:
T12 3213 , T14 1 22 5 T23 5 T24 5 L33 5 T34 Tag -

Denote by n; the number of vertices of G having degree i , ¢ = 1,2,3,4. Then

the following “book—keeping” relations are obeyed:

nmt+nyt+nz+ng = n (2)
Zptrztay = m (3)

T2+ 280+ Tantr = 2n; (4)
T3tz t2z+Ty = 3ng (5)

Tiat Taa+ T3+ 2340 = 4ny (6)
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and. in addition to them:
ny+2ny;+3na+4ny = 2m . (7)

Recall that the left-hand side of Eq. (7) is the sum of the vertex degrees, known
to be equal to twice the number of edges [4, 14].

Relations (2)-(7)} are linearly independent.

Assumning that the parameters n and m are fixed, (2)-(7) may be understood as
a system of six linear equations in thirteen unknowns: ny, nq, ng, n4, 12, i3, T14.
T2, Ty3, Taq, T3z, T34 and 244 . We solve them for the unknowns n, , ny, n3, n4 and
two of the x;;'s, say z,, and z,,. Then z,, and z,, are expressed as linear functions
of 1, m and the remaining seven x;;’s. By substituting x,, and 2,, back into Eq. (1)
we then arrive at an expression for x((7) in terms of n, m and the remaining seven
parameters Iy .

By trial-end-error it was found that the system (2)-(7) should be solved in the

unknowns ny , ny, na, 4, 14 and x4y If so, then

4n—-2m 4 10 2 4 1 2 1
W= T T 3T G I T 3 n T I 3 In T gIn o gIn (8)
and
J-“:M ‘1‘$12+11'13~1$12—§123—2324—ZT33‘§234 (9)
3 3 9 3 9 3 9 9

which combined with Eq. (1) yields

{G)A4n+m+L l +_L E
e = —5 2 12) T\ )T

o Lo ofL #Yy  Fo 1
12122 \/6 36 T3 2\/5 3 T4

1 15
+ %-133+ (Q—ﬁ_ﬁ) Tay (10)
x ARE 019377 243 + 0.04957 213 + 0.08333 242

12

+ 0.04714 293 + 0.02022 254 + 0.02778 233 + 0.01090 34 .
Because all multipliers on the right-hand side of (10) are positive-valued, this ex-
pression is convenient for deducing the conditions that molecular graphs with small

\ must obey.



Gl

3. MOLECULAR GRAPHS WITH SMALL CONNECTIVITY
INDICES

Our considerations (which basically are a kind of integer-linear-programming rea-
soning) are based on the fact that all multipliers on the right-hand side of (10) are
positive-valued. Define therefore an auxiliary quantity A as:

in+m
12

& 0.12377 215 + 0.04957 15 + 0.08333 242 + 0.04714 x5

A= x(G)-

4+ 0.02022 254 + 0.02778 235 + 0.01090 234 (11)

and note that it cannot be negative-valued.

Now, x(G) will attain its smallest, second-smallest, third-smallest, ..., values
il A is equal to zero or is as close to zero as possible. This will be achieved if the
parameters x;; , occurring on the right-hand side of (11) have non-negative integer
values, close to zero. In addition, these parameters must be chosen in a “graphical”
manner, namely so that there exist graphs pertaining to them [21]. Therefore, in
order to minimize A, n, and nj are required to be equal to zero or as close to zero
as possible.

For our considerations it is crucial that A, Eq. (11), depends on x5, 13, 222,
223, L34, Taz and x34, but does not (explicitly) depend on n and m. As a consequence,
the below argument, already used in [21] in the case of chemical trees, m =n — 1, is
equally applicable to unicyclic (m = n), bicyclic (m = n + 1), tricyclic (m = n + 2),
etc., molecular graphs.

From Eq. (11) it is seen that if n = 3 and n3 = 0 then A is at least 6 x 0.02022 =
0.12132. If n; = 2 and n3 = 1 then A is at least 4 x 0.02022 + 3 x 0.01090 = 0.11358.
[fn, = 1 and n3 = 2 then A is at least 2 x 0.02022 + 6 x 0.01090 = 0.10584. Ifn, = 0
and n3 = 3 then A is at least 9 x 0.01090 = 0.09810. In summary, if ny + nz = 3
then A cannot be less than 0.09810. Clearly, A will exceed the value 0.09810 also if
ng+naz > 3.

We now consider the case when ny 4+ n3 < 2 and search for graphically feasible

combinations of x15, 213, ¥22, T93, €24, 233 and xa4 for which A is less than 0.098.



There are exactly nine such combinations, given in Table 1.

7y n3 |non-zero &i;'s A

0 0 0

0 1 |234=3 0.03270
1 0 |z4=2 0.04044
0 2 T34 =6 0.06540
0 1 |254=2, z33=1 0.07137
0 2 T3q = 4 s L3z = 1 0.07137
1 1 Ty=2,334=3 0.07314
2 0 Tq = 4 0.08088
1 1 |2g=1, 234=2, 255=1]0.08916

Table 1. Graphically feasible combinations of the parameters x5, 213, T22, Z23.

T34, T33 and x34 for which A < 0.09810; if ny + n3 > 3 then A > 0.09810

From Eqs. (2) and (7) we readily obtain
2m+n)=3n, +4n;+5n3+6n3 =3(n; +n2+2n3+2n4) + 0y —n3

which implies
2(n +m) = nz — nz (mod 3)
and therefore

n+m=n;—n; (mod 3) .

Thus, the congruence class modulo 3 to which n + m belongs depends solely on the
number of vertices of degree two and three. Bearing this in mind, from the data
given in Table 1 we conclude that among the combinations for which A < 0.9810,
there are three with n + m = 0 (mod 3), three with n + m = 1 (mod 3), and
three with n + m = 2 (mod 3). This means that the combinations given in Table 1
completely determine the (n, m)-molecular graphs with the smallest, second-smallest
and third-smallest connectivity indices (except, possibly, for the first few values of
i, see below).

Using the data given in Table 1 we arrive at our main results:
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Theorem 1. If n is sufficiently large (cf. Table 2), then for any value of m
n—1 < m < 2n, the following is true.

(a) If » + m = 0 (mod 3), then among (n, m)-molecular graphs, the graphs without
vertices of degree two and three (that is, the graphs possessing only vertices of degree
one and four) have the smallest connectivity indices, equal to (4n + m)/12.

(b) If n 4+ m =1 (mod 3}, then among (n, m)-molecular graphs, the graphs without
vertices of degree two and with a single vertex of degree three, adjacent to three

vertices of degree four, have the smallest connectivity indices, equal to (4n+m)/12+

(3V3 - 5)/6.

(¢) If 2 +m = 2 (mod 3), then among (n, m)-molecular graph, the graphs without
vertices of degree three and with a single vertex of degree two, adjacent to two vertices
of degree four, have the smallest connectivity indices, equal to (4n+m)/12+(3 V2 -
4)/6.

Theorem 2. If n is sufficiently large (cf. Table 2), then for any value of m
n—=1<m < 2n, the following is true.

(a) If n + m = 0 (mod 3), then among (n,m)-molecular graphs, the graphs with a
single vertex of degree two, adjacent to two vertices of degree four, and a single vertex
of degree three, adjacent to three vertices of degree four, have the second-smallest
connectivity indices, equal to (4n 4+ m)/12 + (V2 + /3 - 3)/2.

(b) If n + m = 1 (mod 3), then among (n,m)-molecular graphs, the graphs without
vertices of degree two and with a single vertex of degree three, adjacent to two vertices
of degree four and a vertex of degree one, have the second-smallest connectivity
indices, equal to (4n +m)/12 + (8 /3 — 13)/12.

(¢) f n 4+ m = 2 (mod 3), then among {n,m)-molecular graphs, the graphs without
vertices of degree two and with two vertices of degree three, each adjacent to three
vertices of degree four, have the second-smallest connectivity indices, equal to (4n +

m)/12 + (33 -5)/3.

Theorem 3. If n is sufficiently large (cf. Table 2), then for any value of m
n—1<m < 2n, the following is true.

(a) f n + m = 0 (mod 3), then among (n,m)-molecular graphs, the graphs with
a single vertex of degree two, adjacent to a vertex of degree four and the vertex of

degree three, and a single vertex of degree three, adjacent to two vertices of degree
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four and the vertex of degree two, have the third-smallest connectivity indices, equal
to (dn+m)f12 +(3v2 + 43426 - 15)/12.

(b) If n +m =1 (mod 3), then among (n, m)-molecular graphs, the graphs without
vertices of degree three and with two vertices of degree two, each adjacent to two
vertices of degree four, have the third-smallest connectivity indices, equal to (4n +

m)f12 + (32— 4)/3.

(c) If n +m = 2 (mod 3), then among (n, m)-molecular graphs, the graphs without
vertices of degree two and with two adjacent vertices of degree three, each adjacent
to two vertices of degree four, have the third—smallest connectivity indices, equal to

(dn+m)/12 + (8 V3 - 13)/12.

What “sufficiently large n” is depends of the value of m and the congruence class
of n+m. In Table 2 are given the smallest values of n for which Theorems 1-3 hold
in the case of acyclic, unicyclic, bicyclic and tricyclic molecular graphs; the acyclic

case has earlier been reported [21].

n+m=0{n+m=1l|n+m=2
acyclic |m=n-1| 5,17,1713,13,13| 9,21, 21
unicyclic|m=n 9,12,12(11,11,11| 7,16, 16
bicyclic |m=n+1(10,10,10]| 9, 9, 9| 8,14, 14
tricyclic |m=n+2| 8, 8, 8| 7,10,10( 9,15, 15

Table 2. The smallest number of vertices of (n, m)-molecular graphs for which

Theorems 1, 2 and 3, respectively, are applicable

Anyway. Theorems 1-3 do not cover the first few values of n, because molecular
graphs with properties specified in these theorems do not exist if n is not large enough.
The finding of the respective “exceptional” graphs (with n-values smaller than what
in Theorems 1-3 is specified as “sufficiently large”) needs to be done either by using
some special graph-theoretical reasoning or by brute—force search. A complete list of
chemical trees with smallest, second -smallest and third-smallest connectivity indices
has been reported elsewhere [21]. Here we show the analogous results for unicyclic

molecular graphs.



In Figs. la and lb are depicted unicyclic n-vertex molecular graphs with the
smallest (left), second-smallest (center) and third-smallest (right) connectivity in-
dices, 3 €< n < 20. Asterisks indicate the smallest graphs to which one of the
Theorems 1-3 is applicable. In the general case the graphs characterized by Theo-
rems 1-3 are not unique. In Figs. 1a and 1b only one representative for each case is

depicted.

4. ON MOLECULAR GRAPHS WITH LARGE CONNECTIVITY
INDICES

In order to obtain molecular graphs with large x-values, we may pursue a proce-
dure analogous to what was described in Section 2: solving the system (2)-(7) in the

unknowns n,, np, n3, n4, T12 and 2, . This results in

2 1 1 1 2 5
211—2'"*gl'la——-'ﬂu‘F—Iza"'—‘«'u'f—333+—I:u+2«

L3 2 3 2 3 6
= Bm—2n— Lo to— g Spe Ype oAl g
T = n n 3I13 2-“-‘14 33:23 3 24 3133 6134 Taa
and
CVZ-2n+(3-2v2m 142v2-2V3 VvZ-1
x(G) = 2 - 6 T13 — 1 T4
462 3-22 3-2V2
= T3 — Toq — T33
6 4 6
11-5v2-23 3-2V2 i
D T3g 1 Tyq (12)
g BV ; B=2VIm 0 06072215 — 0.10355 214 — 002272 225

0.04289 244 — 0.02860 233 — 0.03874 34 — 0.04289 244 .

All multipliers on the right-hand side of (12) are negative-valued. Thus, one may
expect that the molecular graphs with greatest x-values are those for which all the
parameters T3, T14, T23, &24, T3z, T34 and z44 are either zero or close to zero, that
is for which na and n4 are either zero or close to zero. This, however, is true only for

(n,m)-molecular graphs for which m ~ n. With increasing number of edges there
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necessarily has to be more and more degree-three and degree-four vertices, making
the analysis based on Eq. (12) difficult and/or infeasible.

Only for m = n — 1 (acyclic graphs) and n = m (unicyclic graphs) Eq. (12)
enables direct construction of molecular graphs with greatest connectivity indices.
For acyclic graphs this has been reported earlier [21]. For monocyclic graphs we state

the analogous results without a detailed proof.

Theorem 4. Among unicyclic n-vertex molecular graphs, n > 3, the cycle has

greatest connectivity index, equal to n/2.

Theorem 5. Among unicyclic n-vertex molecular graphs, n > 5, the graphs without
vertices of degree four, with a single vertex of degree three and a single vertex of degree
one, that are not mutually adjacent, have the second-greatest connectivity indices,

equal to nf2 — (4 — V2 — v6)/2.

Theorem 6. Among unicyclic n-vertex molecular graphs, n > 5, the graphs without
vertices of degree four, with a single vertex of degree three and a single vertex of degree
one, that are mutually adjacent, have the third-greatest connectivity indices, equal

tonf2 — (9 —2v3 —26)/6.

Because cycles are regular graphs of degree two, Theorem 4 is just a special case
of the more general (above mentioned) result of Fajtlowicz [15] and Araujo & de la
Peiia [16).

The structure of the graphs specified in Theorems 4-6 is shown in Fig. 2. The
only “exceptional” case, not covered by Theorems 4-6 is the second-greatest x-value
for n = 4. This is immediately identified as methyl-cyclopropane; the respective
graph is also shown in Fig. 2.

If 1n > n then the characterization of (n,m)-molecular graphs possessing greatest
connectivity indices cannot be accomplished by the presently elaborated method.

Efforts are being made to approach this problem by other means.
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