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Abstract

Published methods for computing coefficients for acyclic (matching) polynomials of chemical
graphs suffer from various shortcomings, namely, they are too slow for use with many large
chemical graphs of theoretical interest, they produce only approximate coefficients of
unspecified accuracy, they require computer hardware resources not widely available, or
authors have chosen to make only results, not the methods themselves, available. Here,
several new methods are presented, programmed in Mathematica®, all of which produce
exact coefficients for acyclic polynomials on readily available computers. These methods also
illustrate various algebraic approaches to obtaining the polynomial which may prove useful in
other applications.

1 Introduction

The principal use of the acyclic or matching polynomial of a chemical graph has been
its definition as the secular (characteristic) polynomial for the hypothetical reference structure
used in calculating topological resonance energies of unsaturated hydrocarbon pi electron
species [1-3]. Several applications to fullerene carbon clusters have appeared in the recent
theoretical chemistry literature [4-11]. However, a lack of convenient and efficient
computation procedures hampers considering many very large polycyclic molecular 7 systems
of theoretical interest. The same circumstances may also account for slow development of
additional practical applications for the matching polynomial, e.g., the use of the coefficient
terms of the polynomial as topological indices in structure/property and structure/activity
studies [12-14].

In general, obtaining the matching polynomial for polycyclic graphs is a combinatorial
problem requiring a large number of computational steps. Herndon [15], and independently
Babi¢ and Ori [6], showed that the number of terms that must be computed and summed to
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make up the polynomial can be minimized by selecting from the graph a contiguous set of
edges, the removal of which renders the graph acyclic. Later, Babic, et af. [8] published results
of a method that is apparently based on a quite different approach. This method is very fast,
and graphs of up to 70 vertices are tractable. However, in these publications only results were
given; the method itself was not described.

Very recently, Salvador et al. [16] published two additional methods, following the
work of Rosenfeld and Gutman [17]. As in Babi¢ et al. [8], several results are given for one
of the methods, with only an outline of the actual computations. A URL is provided,
however, for downloading an executable file. In this method, as with most of the other
methods, precision of results is limited by the accuracy of the computer’s floating-point
registers. These authors do, however, claim this method to be about as fast as that outlined by
Babi¢ er al. Their other method consists of a Mathematica® procedure, therefore giving exact
results, but requires large amounts of computer RAM to avoid extensive swapping to disk.
This is surely the result of the procedure’s use of Mathematica® as a symbol processor, taking
many partial derivatives of equations that contain numerically undefined symbols. In our
hands, some other 60-vertex graphs would not run at all, even with 64 megabytes of RAM.
Finally, Balakrishnaraja and Venuvanalingam [11] devised a method based on an artificial
intelligence algorithm, for which they claim considerable speed, but there appear to be no
further published development of their method.

In discussing the relative merits of various computational methods, it should be borne
in mind that there is no a priori reason for different methods to scale in the same way with
graph size, and the best methed for one problem may not be best for another. The procedures
presented here are all written in Mathematica®, and so provide exact polynomial coefficients
for graphs of all sizes. In addition, the procedures make only very limited use of
Mathematica® as a symbol processor, and so make no excessive demands on computer
memory. This second feature would also make it easier to translate the programs into Fortran,
Pascal, or C, subject to the condition that none of these has the built-in ability of
Mathematica® to retain all digits in integer calculations.

2 Methods

All computations of acyclic polynomials in this paper utilize the relationship that the
acyclic polynomial of a graph, P(G), is equal to the acyclic polynomial of that graph with one
edge removed, P(G-e), minus that for the same graph with that edge, its two defining vertices,
and all other edges attached thereto removed, P(G-v,,v,) [18], and also the fact that, for a
graph that contains no cycles, the acyclic polynomial is identical to the characteristic
polynomial. Thus, the acyclic polynomial of a polycyclic graph can be built up by adding and
subtracting characteristic polynomials of various acyclic fragments. There are many
published methods for computing characteristic polynomials of graphs. We have programmed
the most promising of these in Mathematica® and compared their ease and speed of use.
Those results will be published separately [19].

As a baseline matching polynomial method, we wrote a program that uses as input an
adjacency matrix and a user-defined path of contiguous edges, the removal of all of which
leaves an acyclic fragment. This program removes edge sets in a stepwise fashion that
eventually treats all relevant substructures while minimizing the number of computational
steps to go from one to the next, i. e., by adding or subtracting only one bond where possible.
All fragments are further decomposed to acyclic substructures, and the characteristic



polynomials of these are computed by a Mathematica® implementation of the Le Verrier-
Faddeev-Frame method [20]. This procedure runs adequately on a mid-range PC (233MHz),
but its execution time increases rapidly with graph size, no doubt because of the very large
combinatorial increase. This is the same situation described by Balasubramanian [9,10]. We
also wrote a version that demands a user-defined set of edges but also works if the edge set is
not a contiguous path. Using coronene (C,,H,,) as a test case, computation time for a
maximally disjoint edge set (with no vertex common to any two edges) was three times
greater than that for a contiguous-path edge set.

We also tested a series of programs based on automatically removing edges with what
we term the “greatest extended connectivity” instead of those comprising a pre-defined set.
The concept of extended bond connectivity is rooted in that of vertex extended connectivity as
used by Herndon [21,22]. The premise here is that, if one looks not just at those vertices to
which a vertex is directly connected, but also those to which it is connected by two-edge
paths, three-edge paths, efc., one or a few vertices will be seen to be more “connected” than
the others, even in highly interconnected structures like fullerenes. For technical reasons [21]
one uses the augmented adjacency matrix, which is the sum of the normal adjacency matrix
and the identity matrix of appropriate size, to compute vertex extended connectivity. In the
computation, the augmented adjacency matrix is iteratively postmultiplied by a column vector
until one element of the vector is larger than all the others, or until the count of largest
numbers does not change, i. e., v,,; = A'v,. The elements of the initial vector, v,, are all ones.

This concept is easily extended to edges by defining edge extended connectivity at
each iteration as the sum of the extended connectivities of the two vertices that define the
edge. In our implementation, iteration continues until one bond is more “connected” than all
the others or until the number of edges with equal extended connectivities does not change.
The edge so selected is the one removed from the structure in the next step of generating an
acyclic structure.

None of our extended connectivity procedures uses the Le Verrier-Faddeev-Frame
method, nor indeed computes any characteristic polynomials at all. Decomposition of the
graph continues to subgraphs consisting only of isolated vertices, simple cycles, and linear
chains, and the characteristic polynomials for these are looked up in a table. (The
characteristic polynomial of a cycle, C,, is equal to that of a linear chain of the same size
minus that of the linear chain two units smaller, i. e., P(C ) =P(L,) - P(L,.,).) The
characteristic polynomial of n isolated vertices is just x", and that of a graph consisting of
several disjoint pieces is the product of the characteristic polynomials of the pieces.

1t is necessary to recalculate the edge extended connectivities after the removal of each
edge because removal of one edge changes the extended connectivities of all the others. In
practice, we found that computing the edge extended connectivities only once and using those
results throughout the computation led to a large increase in computation time, although of
course the correct answer was eventually obtained. The edge extended connectivity procedure
at this stage of development, however, still did not match the performance of our baseline
method that utilized a pre-defined continuous path of edges.

We thought to further improve performance by adding trees to the look-up table.
Characteristic polynomials for all trees with 10 or fewer vertices were published long ago
[23]. Challenges in this approach were (1) how to uniquely identify the trees, (2) how to
recognize trees in adjacency matrices of subgraphs consisting of several disjoint pieces while
excluding branched cycles, and (3) how to do this in a computationally efficient manner. In
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the actual experiments, we added to the look-up table all trees (not containing cycles) with
nine or fewer vertices.

In addressing the first problem, we found that the sum of the edge extended
connectivities after the fourth iteration was a unique identifier for trees of this size with only
two exceptions, viz., 3,3-dimethylpentane is the same as 2,4-dimethylhexane, and 2,3-
dimethylhexane is the same as 3-methyloctane. These cases are easily dealt with because the
trees are of different sizes. The identifier does distinguish all pairs of isospectral trees in the
table. Computing the sums after five iterations instead of four may resolve these ambiguities,
too. We did not actually try that experiment, but it would be a logical step if larger numbers of
duplicates appeared when larger trees were added. The product of the edge extended
connectivities provided a unique identifier, but the integers involved were so large that a
significant penalty in execution time would have resulted from their use.

The second problem was somewhat less tractable. The solution we found consisted of
keeping a running list of vertices accounted for as isolated vertices, parts of simple cycles and
linear chains, and parts of trees already dealt with. To identify a new fragment in the
adjacency matrix of a subgraph, we found the lowest-numbered vertex not already accounted
for, then constructed a vector consisting of all zeroes except for a one in the position of that
lowest-numbered vertex. Then, we iteratively computed additional vectors by v, =v, +
A-v,, where this A is the normal (not augmented) adjacency matrix of the subgraph. When the
number of zeroes in v stops decreasing, then v has nonzero elements at the positions of all the
vertices that belong to the new fragment. By examining the count of nonzero elements and
the relevant row sums from the adjacency matrix, it is easy to determine whether the fragment
can be looked up in the table. If the entire subgraph consists of such fragments, then its
characteristic polynomial is computed as the product of the appropriate entries in the look-up
tables; if not, the subgraph is decomposed further.

The third problem was dealt with by the exceptional ability of Mathematica® to
manipulate vectors, and matrices. Mathematica® treats vectors as lists of numbers and
matrices as lists of (row) vectors, and it has many built-in functions for performing various
operations on those objects and determining the nature of their elements. With coronene as
the test case, this method was still about 40% slower than the continuous-path method. With
a C,, fullerene, however, it was about 33% faster than the continuous-path method. As we
stated above, there is no guarantee that different algorithms for computing the acyclic
polynomial will scale in the same way with the size of the graph.

Several further improvements could probably be made on this method. Acyclic
polynomials of small graphs with branched cycles and polycycles could be added to the look-
up tables. Simple trees with 10 vertices could be included (although this would double the
number of trees in the look-up table). A more computationally efficient unique identifier for
the trees could probably be found. Whether the methods discussed here ever become the most
efficient for computing acyclic polynomials or not, we believe the greatest edge extended
connectivity algorithm offers a novel approach to analyzing graphs that may prove useful in
other contexts as well.

3 Conclusions
Several novel methods for computing the acyclic polynomial of a graph were

programmed in Mathematica® and tested. So far, the most efficient of these for larger graphs
is one based on a novel concept of decomposing the graph according to greatest edge extended
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connectivity. This concept is a logical outgrowth of the previously elucidated vertex extended
connectivity for uniquely identifying graphs [21,22]. To cur knowledge, the concept of edge
extended connectivity is new, and this descriptor may find uses in other areas in the future.
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