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Abstract

The definition of 1/2 essentially disconnected single co-
ronoid systems is extended to 1/n (n is a positive inte-
ger) essentially disconnected multiple coronoid systems.
An equivalent definition of 1/2 essentially disconnected
single coronoid systems is given. Some properties of
1/n essentially disconnected multiple coronoid systems
are discussed.

1. Introduction

There has been considerable interest in the enumeration and classihcation
of benzenoid and coronoid systems in the past few years [1-3]. The systems
correspond in a natural way to benzenoid hydrocarbons and coronoid hy-
drocarbons [4]. A benzenoid system [4] is a finite connected subgraph of



the infinite hexagonal lattice with no cut vertices or non-hexagonal internal
face. A coronoid system [3] is obtained from a benzenoid system by deleting
some internal vertices and/or internal edges so that at least one hole with
the size of at least two hexagons emerges and is completely surrounded by
hexagons. The so-called perfect matching of a benzenoid or coronoid system
corresponds to the notion of Kekulé structure from organic and physical che-
mistry. Thus a Kekulé structure of a benzenoid or coronoid system is a set
of disjoint edges covering all the vertices of the system. The significance of
Kekulé structures or merely their number is well known in different branches
of organic chemistry [3]. According to whether or not benzenoid or coronoid
systems have Kekulé structures, the systems are divided into Kekuléan or
non-Kekuléan systems. It was realized that Kekulé systems should be divi-
ded further to make the classification more appropriate for studies of Kekulé
structure counts (i.e. the number of Kekulé structures).

It may happen that an edge of a Kekuléan system in a particular position
is or is not selected in all Kekulé structures of that system. The fixed (double
or single) bonds are just associated with such edges. The term “essentially
disconnected” was used for the first time by Cyvin et al [6] to indicate those
Kekuléan systems with fixed bonds. Kekuléan systems without fixed bonds
are referred to as “normal”. Therefore, the neo classification was introdu-
ced (7). This concept stands for normal (n), essentially disconnected (e) and
non-Kekuléan (o) benzenoid systems. The same classification can be app-
lied to coronoid systems [8]. Later, extensive studies of Kekulé structures
of coronoid systems demonstrated the need for a subdivision of normal co-
ronoid systems. Among the normal single coronoid systems some peculiar
systems were identified, which exhibited two schemes of Kekulé structures,
each being associated with fixed bonds. The Kekulé structures of the two
schemes gave the complete set of Kekulé structures (see Fig.1). These nor-
mal single coronoid systerns are called 1/2 (half) essentially disconnected
systems whose strict definition will be given in the next section. On the
other hand, it was found that a subclass of normal single coroneid systems
can be generated from a single hexagon by a series of normal additions and
a corona-condensation [2}. These normal single coronoid systems are defined
as regular single coronoid systers. Then a conjecture about the relation of
1/2 essentially disconnected single coronoid systems and regular single co-
ronoid systems was proposed [2]: A normal single coronoid system which is
not 1/2 essentially disconnected is regular. This conjecture was proved to



be valid later [3]. As a consequence, the rheo classification was introduced:
the single coronoid systems are classified into non-Kekuléan (o), essentially
disconnected (e), regular (r) and 1/2 (half) essentially disconnected (h).

Fig.1 A 1/2 essentially disconnected single coro-
noid system.The two schemes for Kekulé
structures are indicated (the effective units
are hatched).

The definition of “regular” can be extended straightforwardly to multiple
coronoid systems [9]. Therefore, an extension of the concept “1/2 essentially
disconnected” is necessary when multiple coronoid systems are taken into
account [10].

In this paper, we give an equivalent definition for 1/2 essentially dis-
connected single coronoid systems. Then the concept “1/2 essentially dis-
connected” is extended to “1/n essentailly disconnected” in a natural way.
Moreover, some properties concerning 1/n essentially disconnected coronoid
systems are given.

2. Definitions and known results

It is known thal benzenoid and coronoid systems are bipactite. In the
following we may assume that the vertices of a coronoid system in question
have been colored black and white so that the end vertices of each edge are
differently colored. In the following drawings the black vertices are indicated
by dots. Let G be a coronoid system, C, the external boundary of G; C1,Ch,
..., O the boundaries of the holes of G.
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Definition 1 A straight line segment P, P, is called an elementary cut

segment from C; to Cj if:

1. P, is the centre of an edge e; on C;, P, is the centre of an edge ¢; on C};

2. PP, is orthogonal to both e; and ¢;;

3. every point of PP is either an internal or a boundary point of some
hexagon of G.

Fig.2  [lustrations of element cuts, generalized cuts
and standard combinations.
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Definition 2 A broken line segment PiQF; is called a generalized cut

segment from C; to Cj if:

1. P, is the centre of an edge ¢; on C;, P, is the centre of an edge e; on C,
and @ is the centre of a hexagon of G}

2. PQ and P,Q) are orthogonal to ¢; and e;, respectively;

. the angle Q) FP; 1s 60° or 300°;

4. every point of PyQ) P, is either an internal or a boundary point of some
hexagon of G.

Definition 3 An elementary cut (generalized cut) Ej; is the set of edges

intersected by an elementary cut (generalized cut) segment from C; to C;.

E;; is said to be of type L if 2 = ;. Otherwisc, £ is said to be of type I1.

Definition 4 Let By Eiiye Ei_iis Eur be pairwise disjoint ele-

mentary cuts or generalized cuts of type II, where E,, ., is an elemen-

tary cut or generalized cut from Cj to Ci,,, and &4 # & # .. # iy

E=Eii, UEsu U .. UEi_ i UE:i,. E is said to be a standard combina-

tion if the end vertices of the edges of E have the same color when they lie in

the same component of G — E, where G — E is the subgraph of G obtained

from G by deleting all the edges of E.

=

In Fig.2 let £g; be the generalized cut corresponding to the generalized cut
segment PyyQyPay, £y2 the elementary cut corresponding to the elementary
cut segment Py, Py, Eag the generalized cut corresponding to the generalized
cut segment P1yQsPzq. Then E = Eoy |J E12|J B2 is a standard combination.
While the two elementary cuts corresponding to elementary cut segments
P\ Py and Pij Py, respectively; and the generalized cut corresponding to
the generalized cut segment PaQQqPps do not constitute a standard combi-
nation.

Fig.3  Five modes of hexagons in a coronoid system

Definition 5 A normal addition [2] is adding one hexagon to a benzenoid



or coronoid system such that the added hexagon acquires the mode Ly, L or
Ls. A corona condensation [3] is adding one hexagon to a coronoid system
such that the added hexagon acquires the mode L; or Ay (see Fig.3). A
normal tearing down is the opposite process of a normal addition. Similarly,
a corona tearing down is the opposite process of a corona condensation.
Definition 6 A normal coronoid system with m holes [2,9] is said to be
regular if it can be subjected to a series of normal tearings down plus m co-
rona tearings down, each time only one hexagon being removed, right down
to a single hexagon.
Definition 7 A normal single coronoid system G is said to be 1/2 essen-
tially disconnected if and only if:
1. the set of Kekulé structures of G can be divided into two disjoint subsets
K, and Ky;
2. K.(i = 1,2) contains some fixed single bonds which form an elementary
cut or generalized cut E; of type II;
3. Ey|J By is a standard combination.
Recall that for a Kekulé structure M of a coronoid system G, a cycle P
is said to be an M —alternating cycle if the edges of P are alternately in M
and E(G) — M, where E(G) is the edge set of G.The following results are
known:
Theorem 1 [3,9] A normal coronoid system G' with m holes is regular if
and only if there is a Kekulé structure M of G such that the external peri-
meter and all the perimeters of the holes are simultaneously M —alternating
cycles.
Theorem 2 [3] A normal single coronoid system is 1/2 essentially dis-
connected if and only if it is not regular.
The above theorem guarantees that regular and 1/2 essentially disconnec-
ted single coronoid systems constitute a division of normal single coronoid
systems.

3. An equivalent definition for “1/2 essentially disconncted”

Lemma 1 [11] Assume that G is a benzenoid or coronoid system.Let e',e
and ¢” be three consecutive edges of a hexagon s of G. Edges e1,¢€s,..., ¢,
are geometrically parallel to e, where €, is on the external perimeter or the
perimeter of some hole of G, while e; is not on the external perimeter or the



perimeter of any hole of G for i = 1,2,...,n — 1. If e is a fixed single bond
of G, and there is a Kekulé structure containing ¢’ and e”, then all the edges
€1, €2, ..., € are fixed single bonds of G (see Fig.4)

Fig4  Anillustration of Lemma 1.

Lemma 2 Let G be a coronoid system with a fixed single bond e on the
external perimeter or the perimeter of some hole of G. Then ¢ determines
an elementary cut or generalized cut consisting of fixed single bonds of G.
Proof We distinguish two cases:

Fig.5  An illustration of the proof of Lemma 2.

Case 1 Edge ¢ is not a fixed double bond or ¢’ does not belong to G
(see Fig.5). Then there is a Kekulé structure M of G such that e* is an
M—double bond. If e*" is an M —double bond too, then by Lemma 1 all
the edges ey, e, ..., e, are fixed single bonds, where e, is on some perimeter
of G. Thus {e,ei,...,eq} is an elementary cut (if e and ¢, are on the same
perimeter of G) or a generalized cut (if e and e, are on different perimeters
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of G) consisting of fixed single bonds of G. If e** is an M —single bond, then
ep 1s an M —double bond. We consider the following two subcases.
Subcase 1.1 Edge g is a fixed doule bond of G. If all the edges ef,...,¢"
arc fixed double bonds of G, then {e,ey,...,e,} is an elementary cut consi-
sting of fixed single bonds of G. Now suppose that e}, e, ..., e}(t < n) are
fixed double bonds, but €/, is not a fixed double bond. Then there is a
Kekulé structure M’ of G such that = is an M’—double bond. Edge e is
certainly an M'—double bond since it is a fixed double bond of G. Note
that ¢~ is a fixed single bond of ¢. By Lemma 1 all the edges ¢~ e], ..., ¢}
are fixed single bonds. Hence {e, e, ...,eq,e™ €7, ... €]} is a generalized cut
consisting of fixed single bonds of (7.

Subcase 1.2 Edge ¢] is not a fixed double bond of G. Then there is a
Kekule structure M* # M such that e** is an M*—double boad. [t is not
difficult to see that the edges of (M*|JM) — (M~ (| M) constitute several
M —alternating cycles, these cycles are also M*— alternating cycles. Dd-
ges ey and ¢ belong to one of them, say C*. We claim that e cannot
be on C*. Otherwise, an odd length cycle C** consisting of a segment
of C* and the edge e is found, contradicting that G is bipartite. Now let
M~ = (E{C) M) — (E(C™)(\M). Evidently, M~ is a Kekulé structure
of (7. Both ¢* and e™ are M~ —double bonds. {e,e,,...,e,} is a required
elementary cut as mentioned at the beginning of Case 1.

Case 2 Fdge ¢’ is a fixed double bond. By the symmetry between ¢’ and
g, it can be dealt with as in Subcase 1.2

Lemma 3 [11] A coronoid system G is normal if and only if for each
perimeter (' of & | there is a Kekulé structure M of G such that C is an
M —alternating cycle.

Lemma 4 [12] Let & be a Kekuléan coronoid system. Then (7 is es-
sentially disconnected if and only if (7 possesses an elementary cut or gene-
ralized cut £ of type 1 or a standard combination E of type Il such that
|B(G)| = |W(G)] = |W(Gs)| — |B(G)| = 0, where Gi,z = 1,2 is the
component of (7 — FE (the subgraph of (7 obtained from G by deleting all
the edges of E), |B(G,)] and |W((,)| are the numbers of black and white
verlices of (), respectively.

Theorem 3 A normal single coronoid system G is 1/2 cssentially dis-
connected il and only if there is a standard combination E of type Il such
that | B(Gh)| — [W(G1)| = [W(Ga)| = |B(Ga)| = 1 or [B(Gh)| — [W(GY)| =
IW(G2)l - |B(G)| = —1L.



Proof Necessity. Let Cp denote the external perimeter of G, C; the
perimeter of the hole. G' = G — Cj is the subgraph obtained from G by
deleting all the vertices of C together with their incident edges. If G’ has
some pendent edges, then these pendent edges are fixed double bonds of G’,
while those edges incident with the pendent edges are fixed single bonds. If
G’ has no pendent edges, then G’ is a coronoid system. We infer that G’ —
has no Kekulé structures. Otherwise, G — Cy — C, = G' — O has Kekulé
structures, and G is regular (Theorem 1), contradicting that &' is 1/2 essen-
tially disconnected and is not regular (Theorem 2). Hence G’ is essentially
disconnected (Lemma 3), and has fixed single bonds. We have proved that
no matter G' has pendent edges or not, G has fixed single bonds. Now delete
from G" all the fixed single bonds , and all the fixed double bonds together
with their end vertices. Denote the remaining subgraph by G”. Then each
component of (" is normal. We claim that in the process of deleting fixed
bonds of G, the perimeter C; of the hole must be broken. If not, G* — C,
has Kekulé structures. Bear in mind that G" is obtained from G by deleting
the external perimeter Cy and all the fixed bonds of G' = G — C,. Hence,
the fact G” — C; has Kekulé structures implies that G' — Cy — C; has Kekulé
structures, contradicting that G is not regular. There are two possibilities
for C; to be broken. There may be a standard combination £ of G' such
that |B(G))| = |W(G:)|,7 = 1,2, where G, and G, are the two components
of G' — E; or there may be a fixed double bond which does not lie on
but is incident with a vertex of C), say v. Assume that e, and e, are the
two edges on C, whose common end vertex is v. Then e, and e, are two
fixed single bonds of G'. By Lemma 2, e; determines an elementary cut or
generalized cut E; consisting of fixed single bonds of G’. Note that F; must
be of type II. Otherwise, E; is also an elementary cut or generalized cut of
type I of G, and the edges of FE; are also fixed single bonds of G, contra-
dicting that G is normal. It is not difficult to see that £ = E;|JE; is a
standard combination. Now let By = {e1,en,...,e1,}, F2 = {ez,€2,...€2.},
where e; and ey are on Cy, €1, and ey, are on the external perimeter of
G'. Let e, (resp. €;) be the edges on Cp which is parallel to e, (resp.
ez,) and is in the same hexagon with e, (resp. e3). Let B} = E; [ J{e,}],
Ey=E U{e;}. It is evident that £’ = E{|J E} is a standard combination
of G. Delete from Cj the two edges r:; and 2 Cy is broken into two paths
such that the end vertices of each path have the same color, namely, the
difference between the numbers of white vertices and black vertices is 1 or



16 -

—1 for each path. Therefore, |B(G))| — [W(G))| = |W(G2)| = |B(G2)| = 1 or
|B(G\)|—|W(Gy)| = |W(G,)| - |B(G2)| = —1. The necessity is thus proved.
Sufficiency. Assume that G has a standard combination £ = E, | J £, such
that for the two components G;,1 = 1,2, |B(G))| — |W(G,)| = |W(G3)| —
|B(G2)| = 1 or |B(Gh)| = |W(G))| = |W(G2)| — |B(G2)| = —=1. This means
that for any Kekulé structure M of G, one and only one vertex of G, is
matched by an edge of E, or E; to a vertex of G;. Namely, one and only
one edge of £ [J E; is an M —double bond. Now denote by K the set of all
Kekulé structures of G, K, the set of Kekulé structures of G with an double
bond in E;,i = 1,2. Then the edges of E, are fixed single bonds of K-,
and the edges of E, are fixed single bonds of K;. By definition 7 G is 1/2
essentially disconnected.

With the above theorem, we are now in the position to give an equivalent
definition for 1/2 essentially disconnected single normal coronoid systems.
Definition 77 A normal single coronoid system G is said to be 1/2 essenti-
ally disconnected if and only if there is a standard combination E = E, | B2
such that |[B(Gh)|—|W(Gi)| = [W(Ga)|—|B(G2)| = Lor [B(G)|-|W(Gy)| =
[W(Ga)| - |B(G2)| = -1

4. 1/n essentially disconnected coronoid systems

With the equivalent definition for 1/2 essentially disconnected single coro-
noid systems, the definition of “1/2 essentially disconnected” can be extended
in a natural way to irregular normal multiple coronoid systems.

Let G be a coronoid system, £ an elementary cut or a generalized cut of
(. Delete from G all the edges of E, and the pendent edges (if any) together
with their end-vertices one by one until no pendent edge is found. Then cach
component of the remaining subgraph is said to be an effective unit of G - E.
For example, in Fig.6 each of G — Ey; (above) and G — Ey; (below) has only
one cffective unit.

Definition 8 Two standard combinations £y = Eyy |J...|J En, and E, =
Fiay | ...l E2n, are said to be independent if £, is contained in the same
effective unit of G — Ey; for all 2 = 1,...,n,, or £, is contained in the same
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effective unit of G — Ey; for all j =1,...,n(see Fig.6).

Definition 9 An irregular normal multiple coronoid system is said to be
1/n(n > 1) essentially disconnected if and only if there are {(> 1) mutually
independent standard combinations E; = Eyl|J...|JEin, (i = 1,...,t) such
that for the two components G;;,7 = 1,2 of G = E,, |B(Ga)| - |W(Gq)| =
(Gl = B(Ga)| = 1 or |B(Ga)l — W(Gu)] = W(Ga)] = B(Ga)| = -1,

where n = [];_, ni.

Fig.6  An illustration of Definition 8, where E, =
E1|UE12,E2 = kn UEn)Eij = {Ea_-,l.e-jﬂ}.
for i,j=1,2.
In section 2 we already knew that for a normal single coronoid system,



il it is not regular, then it must be 1/2 essentially disconnected. For irregu-
lar normal multiple coronoid systems, however, the situation is much more
complicated. We have the following properties.

Property 1 An irregular normal multiple coronoid system needs not be
1/n essentially disconnected for n > 1. One can check that the multiple
coronoid Gy depicted in Fig.7 is normal since each of G) — Cy, G; — C; and
Gy — C3 has Kekulé structures. Gy is not regular since G, — C) - C — (3
has no Kekulé structure. But G, is not 1/n essentially disconnected (later
we will know why this is so).

Fig.7  An irregular normal multiple coronoid
system G which is not 1/n essentially
disconnected
Property 2 An irregular normal multiple coronoid system with m holes
may be 1/n essentially disconnected for 2 < n < 2™. The irregular normal

€ Gy

Fig.8  Irregular normal coronoid systems

Gz and (;Z!



coronoid systems G3,G3 (see Fig.8) and the coronoid system depicted in
Fig.6 each with 2 holes are 1/2 essentially disconnected, 1/3 essentially dis-
connected and 1/4 essentially disconnected, respectively.

In the following we give a criterion for an irregular normal multiple coro-
noid system to be 1/n essentially disconnected.
Theorem 4 Let G be an irregular normal multiple coronoid system, Cp the
boundary of the external perimeter, C;, C3, ..., Cy, the boundaries of the ho-
les. If there is a Cj, (0 < 2 € m) such that G — C, is essentially disconnected
and for G- C; there is a standard combination E=E;,,, | Eii, U ... Eiu_,i,
U Eipiys where ;i\, is an elementary cut or generalized cut from C;, to
Cyy» satislying [B(GY)| — [W(GY)| = [W(G})| — [B(Gy)| = 0, where
G;,i = 1,2 is the component of G — C; — E, then G is 1/h essentially dis-
connected.
Proof. One can check that if £ is a standard combination of G — C; such
that [B(G})| — [W(GY)| = |W(G3)| — |B(GS)| = 0, where G',i = 1,2 is
the component of G — C; — E, then E* = E(J{e,, ez} is a standard com-
bination of G such that |B(G))| — |W(G,)| = |W(G2)| — |B(Gy)| = 1 or
[B(G)| = [W(Gh)| = [W(Ga)| = |B(G2)| = —1, where Gi,i = 1,2 is the
component of G — E, e;,;i = 1,2 is the edge on C; which is parallel to an
edge e} of £ and belongs to the same hexagon as e;. By the definition of
1/n essentially disconnected, G is 1/h essentially disconnected.

It is not difficult to see that the condition in the above theorem is also
necessary for an irregular normal multiple coronoid system to be 1/n essen-
tially disconnected. Thus we can use the above condition as a criterion to
determine whether or not an irregular normal multiple coronoid system is
1/n essentially disconnected. Now we can understand why the irregular nor-
mal coronoid system G is not 1/n essentially disconnected for any integer
n > 1. One can check that each of G — Ci,1 = 0,1,2, is not essentially
disconnected. Since many techniques and algorithms have been developed to
recognize fixed bonds in a coronoid system [9-12], it is easy to know whether
or not G — C, is essentially disconnected.
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