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Abstract

The Wiener index (W) of hexagonal chains (i.e., the molecular graphs of unbranched cata-
condensed benzenoid hydl‘ocarbuns) is examined. The index W is a graph invariant defined as
the sum of distances between all pairs of vertices in a graph. An efficient calculation formula
for W is put forward. This formula is based on simple structural parameters of a graph and
does not include distances between the vertices of the graph.

1. Introduction

Fifty years ago the first method for the calculation of the Wicner index (or Wiener
number) for trees was put forward [1]. Mosoya reformulated the Wiener index in terms
of distances between vertices in an arbitrary graph [2]. He defined W as the sum of

distances between all pairs of vertices of the respective graph G,

W(G) =3 d(u,v),

where d(u,v) is the number of cdges in a shortest path connecting the vertices u and v.



Up to the present, the distance matrix is a basic tool for computing the Wiener index
and related topological indices. Design and applications of topological indices based on
distances in molecular graphs are described in detail in [4-12]. Numerous articles in the
chemical and mathematical literature are devoted to the Wiener index (see monographs
[4, 6, 11] and reviews [7, 9, 12, 13]). Various methods for calculation of W were discussed
in [13, 15-23).

In this paper we derive a new formula for calculation of W for some classes of graphs
which include molecular graphs of unbranched catacondensed benzenoid hydrecarbons.
This formula depends on simple structural parameters of a graph and does not include

distances between the vertices of the graph.

2. Hexagonal chains

In this section we define a class of graphs which are called the hezagonal chains.
Hexagonal chains are exclusively composed of hexagons. Two hexagons have either one
common edge (and are then said to be adjacent) or have no common vertices. No three
hexagons share a common vertex. Fach hexagon is adjacent to two other hexagons,
with the exception of the terminal hexagons to which a single hexagon is adjacent. The
hexagonal chains have exactly two terminal hexagons. Hexagonal chains include the
molecular graphs of unbranched catacondensed benzenoid hydrocarbons [23].

The set of all hexagonal chains with £ hexagons is denoted by Cy. It is easy to see
that every graph G from C} has pg = 4h + 2 vertices and g = 5k + 1 edges.

Let S and S’ be arbitrary subgraphs of a hexagonal chain G such that they are
themselves hexagonal chains and S C §'. Suppose that S is isomorphic to the linear
polyacene and A(S') = h(S) + 1. It is evident that if S does not contain the terminal
hexagon, then S’ may be chosen by two ways. The subgraph S is called the segment of a
hexagonal chain G if every S’ is not isomorphic to the linear polyacene. In other words,

a segment is a subgraph between neighboring kinks of G.



The hexagonal chain (¢ shown in Fig. 1 has seven segments. Every segment is marked
by a straight line. The number of hexagons in a segment S is called its length and is

denoted by {(S). For a segment of a hexagonal chain G, 2 <I(S) < h(G).
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FIGURE 1. Segments of a hexagonal chain.

A hexagonal chain consists of a set of segments Sy, Sz,..., 5, with lengths {(5;) = I
for some n > 1. Since two neighboring segments have always one hexagon in common,
hG) =L+ b+...+ 1, —n+ 1. Denote the vector of segments’ lengths by L(G) =
(lylay- .. tn). The second vector Z(G) = (21,22,...,2n) describes the mutual relation of
the segments. An entry z; = z(5,), either 0 or 1, is assigned to every segment S;. We first
choose z; = z, = 0. Note that three segments S;_1, S5, Sit1, 1 = 2,...,n— 1, induce a
hexagonal chain. Suppose that this chain is embedded into the regular hexagonal lattice
in the plane. Consider the segment S; and draw a line through the centers of the hexagons
of S;. Then z; = 0 if Si_; and Siy, lie on the same side of the line, and z = 1 otherwise.
If z; = 1, then the segments S;_y, 5y, Siyy form a “zigzag fragment” in the corresponding
graph. Therefore we will call S; the zigzag segment. The graph G in Fig. 1 has three
zigzag segments and L = (2,3,2,5,2,2,3), Z = (0,0,1,1,1,0,0).

Suppose now that L and Z are an arbitrary integer and an arbitrary binary n-
dimensional vector, respectively, and let [; > 2 for all 1. It is clear that they uniquely
determine a graph having n segments. We show that I and 7 completely determine also

the Wiener index of the corresponding graph.



4. Proof of Theorem

For an arbitrary edge e = (v, u) of a hexagonal chain G, we define two disjoint vertex
subsets B,(G) = {w | d(w,u) < d(w,v)} and B,(G) = {w | d(w,v) < d(w,u)}. Let
ny(G) = |Bu(G)| and n,(G) = |B.(G)|. By D(v | G) we denote the distance of a vertex
v, D(v | G) = £, d(u,v). It is easy to see that D(u | G) = D(v | G) = n,(G) = nu(G) for
arbitrary adjacent vertices of a bipartite graph.

Let G and H be hexagonal chains. Suppose that F is obtained from these graphs by
identifying its edges (u,v) € £(G) and (u1,v,) € E(H) as depicted in Fig. 2.
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FIGURE 2.







































