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Abstract

Using recently developed methods for calculating the Szeged (Sz) and Wiener
indices (W), we deduce general expressions for Sz and W of benzenoid hydrocarbons
(X4), containing a linear polyacene fragment. Both Sz(X,) and W(X,) are shown
to be cubic polynomials in #, the number of hexagons in the polyacene fragment of
Xi. Besides, the coeflicient of A is 44/3 for Sz(X,) and 16/3 for W(X)). These
properties do not depend on the nature of the terminal groups in Xj,. Other features
of the dependence of Sz and W on the structure of X}, are also established.

Introduction

In this paper we are concerned with the Szeged and Wiener indices of benzenoid
hydrocarbons containing a linear polyacene fragment. The basic terminology and
notation used in this work is the same as in the preceding paper [1], and will not be
specificd here once aguin. In [1] the definitions of the Szeged index (S2) and of the

Wiener index (W) are given in due detail.
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The general form of a benzenoid system (2] possessing a linear polyacene fragment

00000

X

is X:

Here A and I3 denote arbitrary (but benzenoid) terminal groups, and kb is the
number of hexagons in the polyacene fragment. Either A or B or both may be absent
from Xj. If both A and B are absent, then X}, reduces to the polyacene Ly, which is
one of the most extensively studied homologous series of conjugated molecules.

A plethora of works exists in chemical graph theory, devoted to systems of the
form X, or to their special case Ly. Of them we mention the early works on graph
eigenvalues [3] - (6], on Kekulé structures [7], on resonance energy [8, 9], on char-
acteristic and matching polynomials [10] - [12], on the Hosoya index [13], on the
Merrifield Simmons index [14], on the Wiener index [13, 16], on cyclic conjugation
[17, 18], on spectral moments [19, 20] and on the Szeged index [21]. In particular,

expressions for the Wiener and Szeged indices of L,, are known for some time:

16 2

W(Ly) = Thu 12h% 4 §h+ 1 (1)
44 1

Sz(Ly) = ?hu 2407 + ,—;jh+ 1 (2)

see [15] and [21], respectively.

In this work we generalize Eqs. (1) and (2) to systems of the type Xj, in which
A and #3 are arbitrary. It will be seen that some features of the polynomials on the
right-hand side of (1) and (2) are maintained also in the most general case, whereas

other depend on the actual form of the terminal fragments A and B.
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The benzenoid system Xy, the structure of which is depicted in the above diagram,
can be considered as a graph [1, 2]. Then X, can be viewed as being constructed
from the graphs A, B and Ly, by identifying the vertices a; of A with the vertices u;
of Ly, 1= 1,2, as well as by identifying the vertices b; of B with the vertices v; of Ly,

100000
@12 Uy vy 10
Lh

In harmony with the notation of [1], the number of vertices of a graph G will
be denoted by |G|. As it is well known [2], |Li] = 4k + 2. Then from the above
described construction of X follows that this graph has |A|+ |B|+ 4k — 2 vertices.

As a concrete example of a benzenoid molecule of the type X, may serve coroneno-

phenanthreno-hexaccne:

In this molecule A = coronene (|4 = 24), 8 = anthracenc (|B| = 14) and
h = 6. Coroncno-phenanthreno-hexacene possesses 24 + 144+ 4 x6— 2 = 60

carhon atoms.
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Calculating the Wiener and Szeged indices of benzenoid

molecules

An efficient method for the calculation of the topological indices W and Sz of
benzenoid molecules was recently pul forward [22, 23], based on earlier research in
the mathematical theory of Ilamming graphs and its application to benzenoid systems
(see [24] and the references cited therein). We now briefly outline this method.

Throughout the present considerations benzenoid sysiems are viewed as geometric
figures in the plane [2). Notice that these figures are composed of reguler hexagons.

Let B be such a benzenoid system.
Elementary cut

Choose an edge ¢ of the benzenoid system B. Draw a straight line through the
center of e, orthogonal on e. The straight line scgment C, the end-points of which
are at the perimeter of B, is an elementary cut induced by the edge e. Clearly,
C intersects not only the edge e, but all edges lying between the two cnd-points
(inclusive the two edges on the perimeter to which the end-points of C' belong).

As examples we show the elementary cuts C, and C, of coroneno-phenanthreno-
hexacene. On the below diagram the end-points of these elementary cuts are indicated

by heavy dots.

Co

Ca

If the above specified straight line intersects the perimeter in more than two points,

then the end-points of the respective elementary cut are those points of intersection
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with the perimeter, that lie nearest to the edge ¢. This. for instance, is the case with
the cut Oy in the above example: By continuing the straight line pertaining to Cy, it
would intersect also the coronene [ragment; such an double-intersection is, however,

not permitted.
Parameters of the elementary cut

I[ (' is an elementary cut of the benzenoid system B, then the number of edges it
intersects is denoted by r(C|B). This cut divides B into two parts which we denote
by B and 13", These parts possess n(B'|C) and n(B"|C) vertices, respectively. Of

course, for all elementary cuts €' of B,
n(B'|CY + a(B"|C) = |B| (3)

For the elementary cuts of coroneno-phenanthreno-hexacene, shown in the pre-
vious example, r(Co|B) = 4, n(B|C,) = 12, n(B"|C,) = 48, and r(Cy|B) = 2,
n(B|Cy) = 3, n(B"|Cy) = 57. Recall that n(B"]C,) needs not be obtained by
independent counting, but by using the relation (3): n(B"|C,) = |B| - n(B'|C,) =
60 — 12. Similarly, n(B"|C,) = 60 — 3.

Which part, obtained by intersecting B with ', is labeled by B’ and which by
B" is immaterial. In what follows we use a labeling which is most convenient for
the present purpose, i.e., by means of which our expressions get the simplest possible

form.
Complete set of elementary cuts

Every cdge of B is intersected by just one elementary cut. The set of elementary
cuts, intersecting all edges of B is called the complete sel of elementary cuts (CSEC)
of B.

The finding of the CSET of any given benzenoid molecule B is simple and straight-
forward. The number of clements of the CSET is usually not too large, and is certainly
much smaller than the number of vertices or edges of B. If B is symmetric, then the
construction of its CSET is further simplified by using symmetry -arguments.

For instance, the CSEC of pyrene has 7 members, namely the following seven

elementary cuts €, , Cy ..., Ci. Notice that C. and (.. as well as Cr. Cqy Cy
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and C; are symmetry-equivalent. This, in particular, means that they have equal

contributions to the right hand sides of Eqs. (4) and (5).

CCKQ\
Cq

CW
e J & &

Cg e

Both the Wiener and the Szeged indices of benzenoid molecules can be computed

from the CSEC. For the Wiener index [23]:

W(B)= Y. n(B'|C) n(B"|C) {4)
c

whereas for the Szeged index [22]:
Sz(B) = Z r(C|B) n(B'|C) n(B"|C) (5)
[og

In both Egs. (4) and (5) the summation goes over all members of the CSEC of the

respective bengenoid system B.

Application of Egs. (4) and (5) to the benzenoid molecules

containing a linear polyacene fragment

In order to apply Egs. (4) and (5) to systems of the form X, we must first
determine the respective CSEC.

The members of the CSEC of X} are classified into the following four groups:
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(a) the elementary cuts of A, except Cly:

(b) the elementary cuts of B, except Cl;

(c) the clementary cut Cy that goes through all /i hexagons of the polyacene
fragment, intersecting also some edges of A and B,

(d) the clementary cuts Cy and C}. cach intersecting two cdges of the k-th hexagon

of the polyacene fragment, k= 1,2, ... h.

e T

The sets of elementary cuts of type (a) and (b) will be denoted by A and B,
respectively. For instance, for the above specified clementary cuts of coroneno-
phenanthreno-hexacene, C, € A and C, € B.

Bearing in mind the structure of X}, we immediately arrive at the following.

For the elementary cuts C' € A :
n(LL1C) = n(4'|C)
n(Ly|C) = n(A"|C) + |B|+4h - 2
For the elementary cuts C' € B :
n(Ly|C) = n(B'|C)
n(L}|C) = n(B"|C)+ |A| +4h - 2
For the elementary cut Cy:
r(ColXi) = v(ColA) + (ColB)+ &k~ 1

n(X1|Co) = n(A'|Co) + n(B'|Co) + 2k — 1
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n(Xy|Co) =

n{A"|Cp) +n(B"|Co) + 2k —1
For the clementary cuts of the type (d), k= 1.2,...,A

HCil L) = r(ChlLn) =2
n(ILIC) = n(L4|CY) = |A]+ 1k~ 3

A(LI|Cy) = n(LI|CY) = |Bl+ 4h—4k+ |

Subsiitution of the above relations back into Eq. (4) yields

WX = 3 a(A0) [(A"IC)+ B+ 4h— 21+ Y a(B'|0) [o(B"|C)
CeA CeB

+ A+ dh— 2+ P(A|C) + n(B|Co) + 2h—1] [n(A”|Co) + n(B"|Co)+ 2h—1]

h
+2 3 [lAl+ 4k — 3] I8+ 1h - 4k+ 1]

k=1

After a lengthy, but elementary calculation, taking into account Eq. (3) and
bearing in mind that

z n(A'|C') [n(A"|C) + |B|+ 4k~ 2} + n(A'!Cg) n(A"|Cy) = W(A)
CeA

S n(BIC) [n(B"|C) + [Al+ 1h— 2]+ n(B'|Co) n(B"|Cs) = W(B)
CeB

we finally arrive at

W(X) = a3 A3+ ay b+ a b+ ag (6)
where

CeA

ag= W(A)+ W(B)+ (1Bl - 2] 3 a(A10)+ [14— 2 3 n(BIC)

CeB
= |A] = [B]+ n(A]Co) n(B"|Co) + n(B'|Co) n(A"|Co) + 1

2
a=4 5 n(AIC)+ 4 3 n(BIC)+ 24| 1B+ =
CeA ceB 3

16
az= 4(|Al+ [B])— 4 ;  az= 3

By an analogous, bul even more perplexed calculation based on Eq. (5) we obtain

Se(Xn)= by B+ by h®+ by A+ by (1)
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bo = Sz2(A)+ Sz(B)+ [|B]- 2] L r(C|A) n(A'|C)+ [|Al- 2] (ZB (C|B)n(B'|C)
€
+ [r(ColA) + r(Col B) = 1] [n{A']Co) + n(B'|Co)] [2(A"|Co) + n(B"|Co)]
— 1(Co]A) n(A'|Co) n(A"|Co) — r(Co|B) n(B'|Co) n(B"|Cy)
= [r(ColA) + r(ColB) — 1] [IA] + |B[ - 1]

bi=4 ¥ r(ClA) n(A|C) + 4 Z *(C|B) n(B'|C)
CeA

+ 2 [F(ColA)+ r(Col B [|A+ | Bl = 2]+ [n(A'|Co)+ n(B'|Co)] [n(A"|Co)+ n(B"|Co))

4
+ 4 |A[B] =7 [|A]+ |Bi] +

by= 10 (|Al+ |B) = 2444 [r(ColA) +r(ColB)] ; bs= %

Discussion

The special case Ly, is (formally) obtained if both terminal fragments A and B in
Xy, are taken to be graphs with two vertices and an cdge. Then for the elementary cut
Cy, the subgraphs A', A”, B" and B” have a single vertex each, r(A|Co) = r(B|Co) =
1, and the sets A and B are empty. By straightforward calculation it can be verified
that in this case Eqs. (6) and (7) reduce to (1) and (2), respectively.

The Szeged index is necessarily greater than the Wiener index. From Eqs. (4)
and (5) follows that Sz(B) > W(B) holds for all benzenoid systems B, with
equalily only in the case of benzene. (To see this observe that for all clementary cuts,
r(C]B) = 2).

We showed that irrespective of the nature of the terminal fragments A and B, both
the Wiener and the Szeged indices of X3 are cubic polynomials in the variable h, Eqs.
(6) and (7). The expressions oblained for the coelficients a; and b; ;7 =0,1,2,3 , of
these polynomials imply the following conclusions.

1. The coefficients a3 and &; are constants, i.e., are independent of the terminal

fragments A and B. Becausc these cocfficients determine the gross value of Sz and
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W. especially is h is large, we see that the terminal fragments have only a limited

influence on the magnitude of Sz and W. Furthermore,
v 11
SZ(X;,) [~ —4— W(X[L)

holds as a good approximation for all benzenoid systems containing a linear polyacene
fragment. Recall that § = 2.75 , i.e., the ratio of Sz and W is only slightly greater
than 2.

2. The other coefficients of Fqs. (6) and (7) depend on the structure of the
terminal fragments. Fven a superfluous inspection of the respective formulas suggests
that the effect of terminal fragments is greater at the coeflicients pertaining to lower
powers of A. In particular, ¢; depends only on the number of vertices of A and B;
this simple rule is not valid for b,.

3. The structure-dependence of a, and by is rather perplexed, the structure-
dependence of ay and by (although explicitly expressed by us) remains beyond com-
prehension.

1. The expressions for the coelficients b, , i = 0,1, 2 are significantly more compli-
cated than the respective expressions for a;. This feature is certainly caused by the
fact that the right-hand side of Eq. (4} is simpler than the right-hand side of Eq.
(5).

5. Irrespectively of the nature of the terminal fragments A and B, the coefficients
a; and b; , 1 =0,1,2 , are positive-valued.

6. As a curiosity we mention that-whereas ag , a; , by and by are integer—valued,
the coefficients a,, as, b and by are fractions (with nominator being equal to 3). This

property is also independent of the choice of the terminal fragments.
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