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Abstract. Azulenoids are polygonal systems with one pentagon each and
otherwise only heptagons (simply connected mono—5—polyheptagons). Topological
properties (invariants, circumscribing, extremal systems, chemical formulas) of
azulenoids are treated. Enumerations and classifications from computer
programming are reported.

INTRODUCTION

A polygonal system consists of connected polygons, where any two polygons either
share exactly one edge or are disjoint. As chemical graphs [1], the polygonal systems
represent polycyclic conjugated hydrocarbons, a current source of investigations in
organic chemistry, as well as physical, theoretical and mathematical chemistry. Any
vertex in a polygonal system has degree two or three, corresponding to a secondary or
tertiary carbon atom, respectively. In the present work, only simply connected polygonal
systems, say P, are considered. They have nc holes (in contrast to coronoids [2]) and
correspond to completely condensed polycyclic conjugated hydrocarbons. The number of
polygons (or rings) in P is identified by the symbol 7. The C,H_ isomers of the systems
of this category with different ring sizes have been treated [3-5]. In particular, the
isomer enumeration problem of P systems [4—11] has been solved completely for r < 5 [9],
and an extension to larger r values seems to be very complicated. Instead, several
subclasses of P have been considered, such as:

benzenoids [12,13]/polyhexes [13] (exclusively hexagons);

polypentagons [14] (exclusively pentagons);

flucranthenoids/fluorenoids [15—19] (one pentagon, otherwise hexagons);

indacenoids [20] (two pentagons, otherwise hexagons);
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biphenylenoids [21] (one tetragon, otherwise hexagons);

terphenylenoids [22] (two tetragons, otherwise hexagons).

The fluor{anth)enoids and biphenylenoids belong to mono—¢—polyhexes [21-30]
for ¢ = 5 and 4, respectively. A mono—g-polyhex contains exactly one ¢—gon and
otherwise hexagons (if any). In an analogous way, the mono—¢—polyheptagons are
defined as polygonal systems with exactly one ¢-gon and otherwise only heptagons. The
simply connected mono—5—polyheptagons, which include the azulenoids as a subclass,
are the subject of the present work.

AZULENE

The prototype of azulenoids (for a precise definition, see below) is C(cHg azulene;
see Fig. 1. Here is not the place for a comprehensive survey of the literature on this well
known molecule in organic chemistry; we only wish to give a few selected references to
some chemical properties of azulene [31,32] and to some works in structural chemistry
[33,34] and molecular vibrations [34-38].

Azulene is isomeric with CyoHs naphthalene. In total, there are four CjHs
bicyclic isomers of conjugated hydrocarbons [5,7-9]. The azulene and naphthalene
systems have several topological properties in common: as bicyclic polygonal systems
they are catacondensed; they possess the same number of vertices, edges and vertices of
degree two, the same perimeter length in terms of the number of external edges or
vertices, and the same number of edges in the /—factor [39]. This last feature manifests
itself in the fact that each Kekulé structure of azulene or naphthalene possesses five
double bonds. However, azulene has only two Kekulé structures in total, while
naphthalene has three.
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Fig. 1. Azulene, CyoHs.
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DEFINITION AND TOPOLOGICAL PROPERTIES

Definitions. Denote by M a simply connected mono—5—polyheptagon. Then M is a
polygonal system with exactly one pentagon and otherwise only heptagons (if any). A
system M may be geometrically planar (nonhelicenic) or geometrically nonplanar
(helicenic), defined in the same way as the analogous concepts in polyhexes [13,40]. An
azulenoid is a geometrically planar, simply connected mono—&-polyheptagon. In precise
terms, an azulencid is completely defined by a closed path on the mono—5-poly—
heptagonal lattice as shown in Fig. 2. This path constitutes the perimeter of the given
azulenoid.

Fig. 2. An azulenoid (C;sH 1) defined by its perimeter on the
mono—5—heptagonal lattice.

Invariants. In Table 1 a number of invariants are defined for the M systems
(which include azulenoids), and relations between them are specified in terms of the
selected independent pairs (r, ni) and (n, s). The chemical formula of M reads Can‘
Relations analogous to those of Table 1 are readily available for simply connected
polyhexes (including benzenoids and helicenes) [40] and simply connected
mono—5—-polyhexes (including fluoranthenoids/fluorencids) [17]. In both of these latter
cases, the two invariants s and ¢ are not independent. However, as an interesting fact,
the pair (s, f) does provide independent invariants for M, by which all the other given
invariants can be expressed as linear combinations.
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Table 1. Invariants of simply connected mono—5—polyheptagons (M),

including azulenoids.

Invariant* Function of (1, n)) Function of (=, s)

1

r r sln—s)+1

n §r— n; n
1

m 6r—mn,—1 5(3n—s)
1

n; n; 5(8n—55) +5
1

n, 5r—2n, 5(6s—n)—5

s 3r— n o+ 2 s
1

t 2r—n,~2 5(8s—mn) -5

* r= # polygons

n = # vertices

m = # edges

n, = # internal vertices

n,= # external vertices (on the perimeter,

= # edges on the perimeter = perimeter length)
s = # vertices of degree two (on the perimeter)
i = # vertices of degree three on the perimeter

Circumscribing. The circumscribing of a polygonal system by heptagons [41—43]
leads to an algebra quite different from the algebra of circumscribing by hexagons
[18,44,45). Assume that a system M with the invariants Tor (ni)o, g Sy can be
circumscribed by heptagons. Then the following was deduced (starting from =Tt
sﬂ) for the new invariants 7 ete pertaining to circum—M:
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=4 —(n)y+ 2, (m)y=5r~{n)y M
=é(3n0+530)+5, 51:%(n0+390)+5 )

Assume now that M can be circumscribed % times. It is not a quite trivial task to find
the invariants 7). » etc. for the k—fold circumscribed M, viz. k—circum—M. The following
explicit expressions were found in terms of the Fibonacci numbers (FU =F =1 Fy 1
= Fy+ Fy_; for N> 0):

1= [6 =1y + (gl Fop + [275 — (m)g — Arakpr—4 o (3)
3

(0 = [20 ~ 57y + 4(n )] Fyy + (57 — 3(n)g — 10|Fyy, | —10

2k+1 7

= ?(371“—55 + 30)F, o+ 5(53 ‘“0'10)F2k+1 1 -
4

5= 2(330 -y = 10)F. e 5(71 -5+ 10)F2k+1

The relations (3), from which (4) follow, have been proved by complete induction; see
Appendix A.

Extremal Systems. An extremal M is defined in the same way as an extremal
benzenoid [12,44—46]. All extremal M systems are azulenoids. One representative of the
extremal azulenoids for each r value is generated by the spiral walk [17,46,47], as is
illustrated in Fig. 3. When r increases, (ni)ma.x is constant only in the very first step;
otherwise it acquires an increment of one or two units. It has not proved possible to
deduce (n) .. as an explicit function of r in analogy with the known functions for
benzenoids [12,46—48], simply connected mono~g—polyhexes [17,21,26] and some
di—g-polyhexes [22]. A formula of (nz-)max for azulenoids is an open problem as well as
for polyheptagons [42]. However, some significant results have been achieved for a class
of extremal azulenoids, viz. the k—fold circumscribed cyclopentadienyls.

Polycircum—Cyclopentadienyls. Cyclopentadienyl, CsHs, is represented by a
single pentagon. Here the k—circum—CsHs systems are comsidered. In Fig. 3, the
k~circum—CsH systems up to k = 3 are found. For & > 0, a heptagon at the perimeter of
a k—circum—C;sH; system has either two or three vertices of second degree; they can
appropriately be referred to as 2H— or JH-heptagons, respectively. Furthermore, these
heptagons occur always in the combinations ZHSHZH or ZHSHSH2ZH and so that two 2H
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4 ("i) max 4 ( ni)max T (“i)ma.x
i 0 11 11 21 25«
2 0 12 12 22 26

3 1 13 14J 23 27 )
4 2 14 15 2 29

5 3 15 16 25 30

6 5) 16 ISD 2 31 3
7 6 17 18 27 33

8 7 18 20 28 34

9 8 b 19 22 29 35 3
10 10 20 23 N 30 37

Fig. 3. Extremal azulenoids generated by the spiral walk. Increments by two
units in (ni.) when 7 increases) are indicated by arrows in the list of (ni)
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Fig. 4. Two schemes for the generation of heptagons at the perimeter
ofa J@—circum—CSH‘5 system.

Table 2.Invariants and chemical formulas for k—circum—CsH; systems.

k T (ni)k CH,
0 1 0 CsH;
1 6 5 CosHys
2 21 25 CsoHao
3 61 80 CoasHyos
4 166 225 CeosHzrs
5 441 605 Ciso0Hr20

heptagons are never neighbours (e.g. ... SHZHIHSHZHSHZHSH ...); cf. Fig. 4. In Table
2, the (r, ﬂi) invariants and G H_ chemical formulas for some of the systems under
consideration are summarized. On inserting ry = 1, (n), = 0, ny = 5, 55 = 5 in equs.
(3) and (4), the following expressions for k~circum—CsHj systems emerge.

rp=5Fy —4 , (n),=15Fy ~5Fy) ;10 (5)
ng=10Fy +5Fy, 1 —10 , s, =5Fy (8)
These equations are very similar to the corresponding ones for circumscribed heptagon

[43]. In Appendix B, the recurrence relations for the above quantities are given, and an
alternative form of the explicit relation for Ly is included.
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Chemical Formulas. For a given r, the Can formulas of the M systems or
azulenoids span from C5rH3 4o to the formula for the pertinent extremal M system(s).
These latter formulas are readily obtained from (ni)ma.x’ of which the tabulation in Fig.
3 is supposed to be sufficient for all practical purposes, although a general formulation is
not available. All azulenoid C nH . formulas for r < 10 are listed in Table 3.

A spectrum of hydrocarbon formulas has been defined [49]: benzenoid formulas
from catabenzenoid to extremalbenzenoid; infrabenzenoid formulas are found on the
hydrogen—rich side (beyond catabenzenoid); ultrabenzenoid formulas are on the
hydrogen—poor side (beyond extremalbenzenoid). In Table 3, the benzenoid formulas are
separated from the rest by a heavy line. Catabenzenoid formulas are found right above
the staircase boundary. All the catabenzenoid formulas for r > 1 (i.e. all but CGHG) are
also azulenoid formulas, but C,,Hyg is the only extremalbenzenoid formula among them.
The formulas below the staircase boundary in Table 3 are infrabenzenoid. There is one
single ultrabenzenoid formula, viz. CSHS' among the azulenoids.

GENERATION AND ENUMERATION

A computer program for generation and enumeration of benzenoids [50,51] was
adapted to azulenoids. Numerical results for the C an isomers up to r = 7 are collected
in Table 4. The distributions into symmetry groups are included. There is no entry for
the C5h symmetry in Table 4, although this symmetry group does occur; the smallest

C

5 azulenoid is a unique system at r = 11.

In Table 5 the catacondensed (n; = 0) azulenoids up to r = 7 are classified into
unbranched and branched systems. Here the single pentagon (r = 1; cyclopentadienyl) is
the only catacondensed azulenoid belonging to D5 B while 05 B is not at all possible.

The 4 and 22 azulenoids with 7 = 3 and 4, respectively, are depicted in Fig. 5.

OPEN PROBLEM

Constant—isomer series are certain sequences of CnH y formulas where, for a given
class of chemical graphs, the number of isomers is the same. Such sequences have been
detected for benzenoids [52—54], flucranthenoids/flucrenoids [15,16,18], indacenoids [20],
biphenylenoids [21] and terphenylencids [22]. It is not known whether constant—isomer
series exist for azulenoids.
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Table 4. Numbers of azulenoid isomers.

r n; Formula D5 A L’,'2 5 C 5 Total
1 0 C;sH; 1 0 0 1
2 0 CoHg 0 1 0 1
3 0 CisHyy 0 1 9 3
1 CiHyp 0 1 0 il
4 0 CooHyg 0 1 13 14
1 CioHy3 0 2 4 6
2 CuHy 0 2 0 2
5 0 CasHyz 0 4 75 79
1 Cz4Hys 0 3 40 43
2 Ca3Hys 0 3 11 14
3 CagHyy 0 1 2 3
6 0 C3oHag 0 4 455 459
1 CagHyg 0 7 319 326
2 CasHyg 0 9 122 131
3 CorHyz 0 2 35 37
4 CosHys 0 3 5 8
5 CasHys 1 0 0 1
7 0 C3sHas 0 18 2782 2800
1 C34Hoy 0 14 2428 2442
2 Ci3Hyy 0 13 1159 1172
3 C32Hzp 0 10 408 418
4 CyHyg 0 T 101 108
5 CsoHig 0 1 19 20
6 CagHyr 0 1 0 1
APPENDIX A

From eqn. (1), one has the following.

Tk+1:4rk_(ni)k+2 ; (ni)k+1=5rk_(ni)lc

Suppose that the relations (3) are valid for a certain & value. Then:

Tep1 = HIB =79+ (n)glFop + (275 = (m))g — 2Fgp 4 — 4}

(A1)
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Table 5. Numbers of catacondensed azulenoids.

r Form D5 B 6'2 i C ' Total
1 unbranched 1 0 0 1
2 unbranched 0 1 0 i ¢
3 unbranched 0 1 2 3
4 unbranched 0 0 12 12
branched 0 1 1 2
5 unbranched 0 4 54 58
branched 0 0 21 21
6 unbranched 0 0 256 256
branched 0 4 199 203
i/ unbranched 0 15 1141 1156
branched 0 3 1641 1644

—{[20 =51y + &gl Fyy + [5rg — 3(my)g — 101 Fyp, 4 — 10} +2

= (44 o)y + [2 4 3y~ (n )] Fopy g — 4

= (44 1) (Fype + Fopyq) + 2 = (my)g = APy — 4

=(4+ )P o+ 21y — (n)g — 2(Fyp 3 — Fop o) —4

=61+ (n)glFop o + 27 — (n)g — 21 Fyy 5 — 4 (A2)

Hence the first one of relations (3) is valid on substituting k by & + 1. In the same way,
it is found for the last one of relations (3) that:

(mdpy = [20 =51y + A(n) )y o + (B —3(n)g —10]Fy; 5 — 10 (A3)

The relations (3) are readily found to be valid for £ = 0; hence they are proved by
complete induction to be valid in general.
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Fig. 5. The azulenoids with r = 3 and r = 4. Arrowheads indicate CZv symmetry; the
temaining system belong to €.
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APPENDIX B
From relations (1) and (2), the following is obtained straightforwardly.
Tep1 = A (mp+ 25 (m)p, ) = 5m—(n)y (B1)
M1 =5 O+ 58) 45, s =g (m+3s) +5 (B2)

These coupled recurrence relations yield:

Teta =3rk+1—rk+4 (B3)
(g = 8(n)pyy —(n)p+ 10 (B4)
Mpyo=3m,  —n +10 (B5)
e = o1~ % (B8]

Herefrom the explicit expressions for the different invariants in terms of % are available
by the standard method of difference equations, which was exploited extensively for the
enumerations of benzenoid Kekulé structures in particular [39].

Consider T a8 a representative example. Rewrite the recurrence relation (B3) as

M=~y (B7)
where

=t d (B8)
for arbitrary k values. The characteristic equation, viz.

2=3z-1 (B9)

yields



z=3 %48 (B10)

Consequently,

=4 [245) v [258) (b1

As well as for 7, the form (B11) is also valid for (n;)k: (n)p + 10, np = ny + 10 and
Spi only the constants A and B have to be adjusted individually from initial conditions
of the different invariants. Turn back to ., and for the sake of simplicity consider the
special case of k—circum—C H (cf. Table 2). Then, in consistency with eqn. (B8), the
initial conditions for £ = 0 and 1 are 7, = 5 and 10, respectively. Consequently,

a+B=5, 33 B3 -Bp_y (B12)

which yields:
a=B0+vm), B=-B0- (B13)

The result for % is:

rk=¢§[(1+,/5)[3_§_@]k_(1_,/5)[3_5_ﬁ]k]_4 (B14)

In order to establish the equivalence of (B14) with the first one of relations (5),
notice that

3+.,J'5=(1—J2“—1@E,3~,/5=§1—§-A@E (B15)

Hence eqn. (B14) can be modified in the following way.
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O R
=‘/5[[1__5_ﬁ]2k+1_[¢]2k+1]_4_5Fk—4 -

Here the identification with Fibonacci numbers emerges through Binet's formula, which
may be written [39)

[[1_42__@]1\41_[%]%1] _—
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