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Abstract

Simulated annealing belongs together with genetic algorithms and evolution
strategies to major new optimization methods. It is used for optimization of
highly multimodal functions, both for discrete as well as for continuous
functions. Though origin of the method in physics has been nearly
forgotten, it is useful to take into account also other terms connected with
simulation of processes in statistical physics. These terms can be helpful for
deeper understanding of the method. These terms can be also helpful in
evaluation of newly proposed modifications of the method, like force and
parallel simulated annealing in comparison with simple simulated annealing.
The paper introduces statistical physics terms into evaluation of
minimization process of simulated annealing. New modifications of
simulated annealing like forced simulated annealing and parallel simulated
annealing are described in Pascal-like algorithms, their performance is
illustrated by examples accompanied by figures describing processes in
simulated annealing in graph plots of time vs. statistical physics terms.

1. INTRODUCTION

Minimization of multimodal functions and combinatorial problems belongs to basic
problems in science, engineéring or operations research. Recently, the majority of
methods used for solution of this problem are based on stochastic approach, together
with some kind of heuristic. Such methods are genetic algorithms [1-3], evolution
strategies [4], and simulated annealing [5,6].

The connection of simulated annealing with its original purpose - to describe
physical processes - has been nearly forgotten, but we believe, that many terms used in

statistical physics can be still useful for deeper understanding of the method. The
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simulated annealing algorithm [7,8,12,13] is based on the analogy between the
simulated annealing of solids and the problem of solving large scale optimization
problem. In physics annealing denotes a process in which a solid placed in a heat bath
is heated up by increasing the temperature of the bath to a maximum value at which all
particles (molecules or atoms) are randomly arranged so that solid body is melted. This
process is followed by coocling by slowly lowering the temperature of the bath. All
particles arrange themselves in stable positions, which results in the Jow energy state of
a corresponding solid, assuming that the maximum temperature is sufficiently high and
the cooling is carried out sufficiently slowly. Starting off at the maximum value of
temperature, the cooling phase can be described as follows: At each temperature 7, the
solid is allowed to reach therntal equilibrium, described by the probability of being in a

state i with energy £; determined by the Boltzmann distribution

! ( E ]
w(E)=—exp| -— la
where £ is the Boltzmann constant and Q(T) is a normalization factor called the

partition function,
E
T)= Zcxp[—ﬁ) (1b)

where the summation runs over all states i of the solid. As the temperature T
decreases, the Boltzmann distribution favors states with lower energy, and finally,
when temperature approaches zero, only the state with minimal energy has a nonzero
(unit) probability of occurrence. Unfortunately, it is well known that if the cooling is
too rapid (the solid is not allowed to reach thermal equilibrium for each temperature),
defects can be “frozen” into the solid and metastable structures can be reached rather
than the lattice structure with lowest energy.

To simulate the evolution towards the thermal equilibrium of a physical system
(e.g. a many-particle crystalline solid) for a fixed value of the temperature 7,
Metropolis et al. [9] suggested the Monte Carlo method, which generates sequences of
states of the system in the following way: Given the current state of system
(determined by positions of particles) a small random perturbation is generated so that
particles are “gently” displaced (the perturbation should be symmetric, that is, if A and

B are two states, then the probability that a random perturbation of A leads to B must
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equal the probability that a random perturbation of B leads to A). If the difference
AE=E E

“ perturbed 1 current

between the perturbed state and the current state is negative
(£ prnirpea < Eurren )» then the process continues with the new perturbed state. In the
opposite case, if AE >0, then the probability of acceptance of the perturbed state,

Pr(perturbed«current), is given by exp(—AL / kT) (see Fig. 1)
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Figure 1. Plots of Metropolis criterion Pr=min(l,exp{-("-f)/T)) for different
temperatures 7, where f is a fixed functional value (f~4) and /" is an
independent variable taken from the closed interval [0,10]. For decreasing
values of T and for /*>/the probability Pr —0 as T—0.

Pr(perturbed « current) = min(], exp(-AE / kT)) ()

This acceptance rule of new states is called the Metropolis criterion. Following it, the
system eventually evolves into thermal equilibrium; after a large number of
perturbations, using the acceptance criterion (2), the probability distribution of states
approaches the Boltzmann distribution (1). This form of the Monte Carlo method is
known in statistical mechanics as the Metropolis algorithm [9]. In order to formalize
the Metropolis algorithm we introduce the following notation (useful also for our
forthcoming discussion on applications of the method of simulated annealing to
optimizations of large scale problems): A state of system is determined by a state
variable x (in general, a vector composed of many real entries) and an analogue of the
energy f{x) (treated as a function of x). A process of perturbation of the state x onto

another state x’ is represented by a stochastic function x'=Qp.r.(x) . The stochastic
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character of this function consists in its random changes of entries of x onto entries of

x’, see Algorithm 1.

procedure Metropolis_algorithm(X:ni, Xours Kuax, T) 7
begin k:=0; X:=Xj.i:
while k<Kg.. do
begin k:=k+1;
%7 ¢=0poreur (X) 5
Pr:=min(l,exp(-(f(x")-£(x))/T)):
if random<Pr then x:=x";
end;
Kour 1 =X}

end;

Algorithm 1. Implementation of the Metropolis algorithm. Input paramcters ar¢ Xy, Amar, 7, and
output parameter is X, The procedure is repeated ko times, sytmbol ., modifies a current state x
onto another state x', ils acceptance is solved by the Metropolis criterion performed for the

p T. The procedure is initialised by the input state x;,;, after finishing the algorithm the
current state is denoted by X,

In this algorithm random is a uniform random number from the semiopen
interval [0,1). The algorithm contains a while-cycle repeated k., times; this number
should be sufficiently large to achieve the thermal equilibrium. What is very important,
the Metropolis algorithm produces [5,6] a probability distribution approaching the
Boltzmann distribution (1)

w, (x) = = [—&c)) (a)

a0

where the summation runs over all states x. For simplicity, the Boltzmann constant & is
omitted (cf. eqs. (1a-b)), formally, it is shifted to the temperature 7.

The Metropolis algorithm can be used for the computer simulation of the
method of simulated annealing. Simulated annealing can be now viewed as a sequence
of Metropolis algorithms performed for a sequence of properly decreasing values of
the temperature and moreover, an output state x,, from the current Metropolis
algorithm serves as an input state x,, for the next Metropolis algorithm. Initially, the
temperature is set to a high value 7. and the Metropolis algorithm is applied until
equilibrium is achieved (by k.. times, where k.., is the parameter of the Metropolis

algorithm), The temperature is then lowered in steps {e.g. by 7'=af, where
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0 << a < 1), with the system being allowed to approach equilibrium for each step by
generating a sequence of states in the previously described way. The algorithm is
terminated at some small value of the temperature 7., for which virtually no states
with higher functional value than the current one are accepted anymore. The final
“frozen” state X, is then taken as the solution of the problem at hand, see Algorithm 2.
One of the major problems in simulated annealing is the specification of Ty, Tmn, and
the rate of decreasing of 7. For the starting temperature and cooling scheme elaborate
methods have been developed [5,6]. However, since the cooling scheme is not the
main topic of this paper, for clarity we have chosen the most simple cooling scheme.
Starting temperature was roughly set to a value, where about half of perturbations are

accepted by the Metropolis algorithm.

procedure Simulated annealing (Xepes Tmins Tmaxs Kmaxs @) ;
begin X, :=randomly generated state vector;
T:=Tmax?
while T>T,;, do
begin Metropolis_algorithm{Xins,Xouts Kmaxs T) 7
Xini $=Xout7
Ti=a*T;
end;
Xopt + =Xour 7
end;

Algorithm 2. Implementation of simulated annealmg, input parameters are Toiny Tory Kmars €,
and output parameter is x,,,. The algorithm is initialised by ion of the initial
state x,,; and by setting the temperature 7 to its initial value 7., The cycle is repeated while the
temperature T > T, the temperature T is decreased by parameter c. After finishing the cycle the
current state X, determines the solution of the algorithm denoted by x,.

The method of simulated annealing was formulated in a general way so that
“physical ballast” was removed, though some physical concepts still play a role of
fruitful heuristics useful for better intuitive understanding of the method. The main
purpose of the simulated annealing is looking for global solution of optimization

problems of the type
x,, =arg mrg f(x) 4)
where f{x) is a real function determined over the domain [ (usually discrete and finite),

and X, is a value of variable corresponding to the global minimum of f{x) over . The

variable x is considered as a state of hypothetical physical system and the function f{x)
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expresses its “energy”. Then, after the above considerations, the optimization problem
(4) may be successfully approached by the method of simulated annealing. The

parameter “temperature” plays now role of a control parameter of the method.

2. RELATIONS WITH STATISTICAL PHYSICS

As pointed out in the previous Section 1 there exists a clear analogy between the
annealing of solids (or, in general, physical systems composed of many particles that
are mutually interacting) and the solving of optimization problem (4). The physical
annealing process can be successfully modeled by using computer simulation methods
based on the Metropolis algorithm. This method in turn is based on the theory of
statistical physics which can be viewed as the central discipline of condensed matter
physics. We show that there exists very close relation between optimization problem
(4) and statistical physics. This interpretation of the simulated annealing when applied
to the finding of global solution of (4) is interesting not only because of a
phenomenological interest in the analogy but as a possible framework to model the
convergence and corresponding control of the simulated annealing.

The fundamental assumption of statistical physics [10] states that the physics of
many particle systems is compatible with a statistical ensemble and that time averages
of mechanical quantities of the system under microscopic equilibrium are equal to the
corresponding ensemble averages. A number of useful macroscopic quantities can be
then derived from the equilibrium distribution of states of the system. Applying the
principle of equal probability [10], we can show that at the thermal equilibrium the
probability that the system is in some microscopic state with a specified energy is
determined by the Boltzmann distribution (la-b). The relation between statistical
physics and the optimization problem (4) can now be made more explicit. Given a
hypothetical physical system in thermal equilibrium whose internal states x (variables
from the domain D) are distributed according to the expressions (3a-b) (formally
equivalent to (1a-b)) a set of microscopic quantities can be defined for the optimization
problem (4) in a similar way as for standard physical systems.

Let us consider a function f{x) defined over a discrete and finite domain D

D> AcCR, (5)
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where A is a domain (a discrete and finite subset of R, composed of nonnegative real
numbers) of functional values of f The probability distribution of a state x (i.e.
variable x from D), resulting as an application of the Metropolis algorithm performed
for a fixed temperature T, is determined by (3a-b). In our forthcoming considerations it
will be useful to know also the correspending density of functional values y=f{x). In

general, this entity is determined by

w,(y)= % exp( - %) (6a)

aT)=Z|oy) ‘D‘P(-%) (6b)

where D(y)(: D is composed of all x € D that give the same functional value
Y=

D(y)={xeD;y=1(x)} (6c)
and |D(y)| denotes its cardinality. It is easy to see that O(7) determined by (6b) is
identical to its counterpart determined by (3b). The following “macroscopic” quantities

are defined:

(1) The mean value of the function f{x)
{1 =Zyw() ™
(2) The mean value of the function f*(x)
{7} =2y w () ®
(3) The variance of the function f{x)

o*(1)= 2w, O, =) =(7), = (1), ©
(3) The entropy
S(T)=-Ew:(¥) m[%} (10)
(4) The specific heat

_oi D) _ ,28(r)
- 72 — 5T (11)

a1 =)
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Both right-hand sides of (11) can be simply proved by differentiating either (7) or (10)
with respect to T
The density of functional values determined by (6a-b) satisfies the following

asymptotic properties

tmw, () =w.0)=5100) (120

Tow®

1 (ITfJ’=J’W)
Izmw(y) w,(y)= E(yy,,,,) {0 (IF Yo B

where Yo =f{Xsp) is the optimal value of the function f{x) assigned to x,,; determined by

(12b)

(4) as the global minimum. The second limit property (12b) is very important for the
method of simulated annealing; it states that as the temperature 7" approaches zero
(through equilibrium states) the probability of appearing of states corresponding lo

the global minintum is unity.

The partial derivative of ( f )T with respect to T is determined by (11), we get

an._om,,
TZ

ar (2

This means that the mean value ( I )T is decreasing as the temperature T is also

decreasing (through equilibrium states) . Then, according to (12a-b) ,we get

lim (== iD| ,,r (¥ (14a)
’;’ﬂ (f>r = (f)o = Vo (14b)

The mean value ( f’)r satisfies similar asymptotic properties

tm (), =(77). =y Zie0)y as»

U (f2), = )e =Y (155)
For the variance determined by (9) we get
lim *(T) = o*() = (1), = (/. (16a)

ITH??O'( cr(O):(_ )0—(f>;=y:‘w—(ym)2=() (16b)
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The entropy determined by (10) satisfies the following two well-known asymptotic
properties
lim 8(T) = S(e) = In|D) (17a)
lim S(T) = $(0) = In|D(y,, )
=nl=0 (ff D(y,,.) = 1)

Their proof can be simply done introducing (6) into (10) and then turning the

(17b)

temperature 7" either to 7—c or T—0 . The second property (17b) is known in
physics as the third law of thermodynamics. In the case of simulated annealing, the
entropy can be interpreted as a guantitative measure of the degree of optimality.
According to (11) the partial derivative of the entropy with respect to the
temperature T is determined by
&1)_o(n)
ar 7 il

Then, with the decreasing temperature T (through equilibrium states), the entropy

(18)

should be also decreasing, in particular as 7—0 then S(7)—0 (cf. eq. (17b)). In the
neighborhood of 7=0 the entropy S(7) may be approximated by a power series of I’

S(T)=4,+ AT+ AT +... (19
where A=in(| Dy, |), and A,>0. Then the heat capacity C(T) in the neighborhood of
T=0 (cf. eq. (11)) is approximated by

C(T)= Té;[i) =T(4, +24,T+.) (20)

According to this formula and the asymptotic property (16a) of variance, the heat
capacity C(T) satisfies

lim C(T):J;izf c(r)=0 @an
This means that C¢T) should have for 0<T<co at least one maximum and as the

temperature T is turned either to zero or infinity C(7) is vanishing.
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3. MODEL CALCULATIONS
Let us consider a function f:D = {U,I}N — A < R_, with domain composed of
all N-dimensional binary vectors, defined as follows

1 if x| <
f(x)=f(x,,x2,,,_,xN):{fxi+ (i |x|<p)

. (22)
N-|x (if|x]>p)

f(x)

1(x)

p=4
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Figure 2. Plots of function (22) for N=10 and p=4, 7. For p=7 the function contains a
lengthy foot beyond which it rapidly decreases to zero (global deceptive mini %

where |x| =2, is the L; norm of x&{0,1}", 0<ix|<N. The parameter p is bounded by
0sp<N. For p<N this function has two minima, the first minimum is f{x)=1, for |x|=0,
and the second (global) minimum is f{x)=0, for [x|=N. For p=N, the function has only
one (i.e. global) minimum fx)=1/, for |x|=0. The set 4 of functional values is
composed of nonnegative integers bounded from above by fuu, A={0,1,2,... fuut
where f=max(p+1,N-p-1). Schematic plots of ffx) for N=10 and for p=4 and p=7
are displayed in Fig. 2. Parameter p determines the so-called deceptiveness [11] of the
function f{x). If p is slightly smaller than N, then the function contains lengthy foot
starting at |x/=0 and ending at |x|=p, beyond which (for p+/<ix|<N) the function
rapidly decreases to zero (see Fig. 2, plot B). This feature of the function f{x) is called
the deceptiveness [11] and represents a hard task for evolution methods when applied

to find global (deceptive) minima.
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The operator Opemess from the Metropolis algorithm that transforms a binary

vector x ££0, 13" onto another vector x*&f0,1}" is now realized by making use of the

so-called mutation operator il (terminology used in the genetic algorithm [2])

mt

2 = (X, X)) = OFd(x)

mut

23
SO K ) e
where entries of x” are determined by
1- if random < P,
o L B (24)
X (otherwise)

Puar 18 a probability whether the entry x; (for Vi) will be changed to its complement (if
randon< P, or not (otherwise), and random is a uniform random number from the
semiopen interval [0,1). Its value should be small (0<P,.,<<[) , in the opposite case
the mutation operator produces new binary vectors that are very different from their
original counterparts.

In order to calculate macroscopic entities defined in the previous Section 2, we
have to know cardinalities of sets Dy) for the function defined by (19). For instance,
for N=10 and for p=4 and p=7, they are constructed after simple combinatorial
considerations
p=4: D)=, \D(D)|=1, |D(2)|=55, |D(3)|=165, |D(H)|=330, |D(5)| =462
p=7:\D()|=1, |D(D)|=11, |D(2)|=55, |D(3)|=45 |D{4)|=120, |D(5}|=210,

|D(6)1=232, |D(7)|=210, |I(8)|=120

The plots of macroscopic quantities for the function f{x) specified by N=10 and
p=1,4,7, and 9 are displayed in Fig. 3, plots A to E. We see that all asymptotic
properties discussed in the previous Section 2 are satisfied. In particular, the mean
value <f>ris vanishing as 7— 0. This means that for small temperatures the state with
zero functional value is dominant with unit probability of appearance.

In the case of the simulated annealing an evaluation of macroscopic quantities
can be done by approximating densities of functional values. In particular, they are
approximated by appearances of functional values of states that have been accepted by
the Metropolis algorithm for a fixed temperature 7. Let z:()) be a number of

appearance of states x corresponding to y that have appeared in the course of
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Metropolis algorithm for the temperature 7. Then the densities wi{}) are approximated
by

z:(%)
w,( y) R (25)
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Figure 3. Plots of macroscopic quantities calculated by theoretical formulae (7-11) for parameters
p=1,4.7, and 9 (plots A to E).

For k.. sufficiently large, this approximation should provide results that are closely
related to the correct values of wi(y). The plots of all five macroscopic quantitics
determined by (7-11) with densities approximated by (25) are displayed in Fig. 4, plots

A to E. Parameters of the simulated annealing used in calculations of these plots are



~19 -

bimax=10", Pri=0.1, Te=3, Trin=3/30, and a=0.95 26)

00 05 10 15 20

Specific heat
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Figure 4. Plots of all five macroscopic quantities calculated by the method of simulated annealing
specified by parameters (26). For the most deceptive case p=9, the final state x., corresponds to the
unit functional value (local minimum), ie. the method was unable to provide the correct global
minimum.

We see that the simulated annealing for p=1/,4, and 7 has provided correct results for
the mean value <f>r(i.e. </>r—0 as 7—{), whereas for p=9 (the function f{x) has the
highest degree of deceptiveness) the method was unable to provide the correct result,
in particular we got <f>7—/ as 7—{. This means that for p=9 the simulated annealing
was able to give only the suboptimal solution x=(0,0,....,0), |x|=0, for which f{x)=/. A

critical interval of temperatures for this case is 0.7-0.9, above this interval the method
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provides solutions with densities of y=0 closely related to their theoretical values, but
inside of this interval the incidence of states with y=0 was zero. Then, for lower
temperature the Metropolis algorithm was unable to create states with y=0 (due to
extended barrier of functional values, cf. Fig. 2, plot B). This fact is indicated, for
example, by a large maximum on plots of the variance and the specific heat, which may
be physically interpreted as “phase transition” to a configuration separated by great
barrier from the configuration corresponding to the correct solution. Consequently,
these macroscopic quantities might be of value as a valuable indicator of the range of
temperature 7" where decrement in 7" should be smaller to overcome successfully the
“phase transition”,

Few remarks should be made about the simulated annealing when applied to
the function ffx) for the most deceptive case p=9. We have demonstrated that the
simulated annealing with parameters (26) was unable to provide the correct solution.
In general, this failure may be simply surmounted so that the probability P is
substantially increased, say P,.,=0.5. But then it is impossible to consider the simulated
annealing as an evolutionary method; the scanning of search space is then more random
than systematic. The simulated annealing for high values of P, is reduced, in fact, to a
“blind” random searching. For fewer-dimensional cases this approach may be
successful (e.g. searching space of /) is composed of 2'=1024 binary vectors), but
for higher-scale problems such an approach would be totally hopeless. In the
forthcoming part of this Section we present two different approaches how to “gently”
modify the standard version of simulated annealing so that it will be able to give
correct solutions for highly deceptive function f{x) (with p=9), and simultaneously the

evolutionary character of simulated annealing will be saved.

3.1 Forced simulated annealing
In the original version of simulated annealing the resulting state from an application of
the Metropolis algorithm (performed with temperature T') serves as an initial state of
the next Metropolis algorithm (performed with decreased temperature af). This basic
assumption of the standard version of simulated version will be now relaxed so that
each Metropolis algorithm is initialized by the best solution found so far in the previous

history of the simulated annealing (i.e. for its runs with higher temperatures than the



21 -

current temperature), we shall call such simple modification the forced simulated
amnealing. A modification  of  procedures  Metropolis_algorithm  and

Simulated_annealing outlined in Section 1 is displayed in Algorithm 3 and Algorithm 4.

procedure Forced Metropolis algorithm(Xepes Kmax,T) 7
begin k:=0; X:i=Xgt;
while k<k,.x do
begin k:=k+1;
X" 1 =0perrur (X) 7
Pr:=min(l,exp(-(£(x")-£(x))/T));
if random<Pr then
begin x:=x';
if f(x')<f(Xope) then xge:=x’;
end;
end;
end;
Algorithm 3. Implementation of the forced Metropolis algorithm with input parameters X, Kmax, 7.

The algorithm is initialized by x,,,, the best solution found in its course is recorded to x,,, This means
that x,;; serves simul Iy as the output parameter.

procedure Forced Simulated_annealing (Xopts Tmins Traxs Kmaxs Q) ;
begin X.::=randomly generated state vector;

T :=Tmaxs

while T>T,, do

begin Forced Metropolis _algorithm(Xope, Kpax:T) ;

T:= a*T;
end;

end;

Algorithm 4. Implementation of the forced simulated annealing with input parameters Topin, Tmaz, Kimasxs
o and output parameler x,,. The state x,,, , initialized randomly, records the best solution achieved in
the course of the whole history of the algorithm

In general, the forced simulated annealing algorithm does not satisfy a very
important condition that for sufficiently large Kn.. and for discrete temperature steps it
will produce states distributed in accordance with the Boltzmann formula (3). Since in
each temperature-decreasing step the Metropolis algorithm is now initialized by the
best solution achieved so far in the previous history of the simulated annealing, it may
happen (in particular, for lower temperatures) that the solution produced by the last
performance of the Metropolis algorithm represents a local minimum different from the
global minimum. However, k.., and therefore also the necessary computational time

can be smaller than in simple simulated annealing.
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Figure 5. Plots of the mean value </> and specific heat calculated by the method of forced simulated
annealing. The resulting state xo, corresponds for all values of the parameter p to the global minimum
with zero functional value.

The numerical results obtained by the forced simulated annealing for the
function (22) specified by N=10 and p=1,4,7, and 9 are displayed in Fig. 5 for mean
value <f> and specific heat, plots A and B). We see that, in particular, for p=9 (the
most deceptive form) changes of quantities for smaller values of temperature are very
dramatic. For some medium range of temperature the Metropolis algorithm was unable
to keep nonzero distribution of the state with zero functional value (i.e. a binary vector
composed only of 1s). Since the best solution is for the presented example usually
recorded in the very early stage of the process, the Metropolis algorithm produces for
smaller temperatures (7<0.6) acceptable states that are identical with the best solution.

A weaker version of the forced simulated annealing is based on an assumption
that the Metropolis algorithm is initialized by the best solution obtained not in the
preceding history of the method but only in the previous step. Unfortunately, its
application to our most deceptive case p=9 was not successful in overcoming the great
barrier between the local minimum (with unit functional value) and the global minimum

(with zero functional value).

3.2 Parallel simulated annealing
This version of the simulated annealing was successfully used for effective solution of
complicated combinatorial graph-theoretical problems [12,13,14], where the standard

version failed to give correct global solutions. Its basic idea consists in simultaneous
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application of the simulated anncaling to a pool P of states x,x'x'’,... that are
“synchronized” so that Metropolis algorithms running over them have the same
temperature. In order to introduce an interaction between states the so-called
crossover is applied. This operator was taken from the genetic algorithm [2], where it
is usually applied to states x represented by binary vectors. However, the states x can
be also other data structures like permutations. More complex data structures usually
need a reparation process to be feasible after an application of crossover. Crossover

applied to a randomly selected pair of states x,x"eP creates a new pair of states z, z'
(2.2 ) =Ocross(,X) v1))
Formally, let x=(x;x....xx) and x'=(x/,x,...,x/,) be states from the right-hand side

of (27), then the states z and =" are determined by
- ’
E= Wl ety (282)

27 3 | W s Ko s i) (28b)
where r, randomly selected from /<r<n, is called the crossover point.

An event of the interaction of two randomly selected states x,x’'eP in the
framework of the Metropolis algorithm is determined by a probability 0<Pa<</. It
determines a probability that instead of the standard mutation of a state xeP an
interaction of two states x,x’'eP will be performed by the crossover operator (27).
Then, the problem whether the resulting new states z and z’ are accepted or not is
solved by the Metropolis criterion (2) applied separately for pairs (x,z) and (x’,z’). For
instance, if the Metropolis criterion accepts the new state z, then the pool P is updated
so that the old state x is left out and the new state z is introduced into the pool P,
formally P:=(P\{x}) {z}. The resulting solution of the method is a state determined by

x,, =argmin f (x) (29)
where P is a pool resulting from the completed simulated annealing. The procedures

Metropolis_algerithm and Simulated_annealing can be simply modified for the parallel

version of simulated annealing, see Algorithm 5 and Algorithm 6.
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procedure Parallel Metropolis_algorithm(P, kes., T)
begin k:=0;
while k>k.,.. do
begin k:=k+1;
if random<P..... then
begin select randomly xe€P;

X" :=0pectur (X) 7
Pr:=min(l,exp(-(f(x")-£(x))/T));
if random<Pr then P:=(P\{x))uU{x’};

end else
begin select randomly x,x’'e€P;

(2,2") 1=0cross (X, X" )
Prii=min(l,exp(-{f(2)-£(x))/T)):
Pry:=min(l,exp(-(£(z’)-£(x"))/T));
if random<Pr; then P:=(P\(x})u{z};
if random<Pr; then P:=(P\{x"})u{z’};

end;
end;
end;

Algorithm 5. Imnpl ion of the parallel Metropolis algorithm, input parameters are P, &,..., T. In

the whilecycle, repeated A times, a random choice (specified by the probability Per.s) of whether

the algorithm will perform single perturbation of a randomly selected state x or a crossover between

two randomly selected states x and x " is applied. In the latter case, the new states z and 2 arc accepted
ling to two Metropolis criteria performed independently for pairs (x,2) and (x',2”).

procedure Parallel Simulated_annealing (Xope, ...,,,,'I‘m,,, Kmaxe @) 7
begin P:=randomly generated pool of states x,x',... ;

T: 'Tmaxl

while T>T,, do

begin Parallel Metropolis_algorithm(P, kpax,T)

Ti=0*T;
end;
Xopet=arg min {f(x),xeP};
end;
Algorithm 6. Impl ion of parallel simulated ling, input par Toaes Tomicy ey 4,

and output parameter is X,,,. The algorithm is initialized by random generation of states from the pool
P. Aftcr its finishing the best state of the pool is recorded to X,pr.
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Figure 6. Plots of the mean value and specific hieat calculated by the parallel simulated annealing.
The poal P is composed of ten states. Since afier the finishing of the algorithm the pool P still
contains one state with unit functional value (local minimum), the plot A for the mean value </>p
tends to small positive number as 7—0. This is the main reason why the heat capacity (see plot B)
rapidly increases as 7-0.

Numerical results of the parallel simulated annealing for the mean value </>
and specific heat are displayed in Fig. 6. Plots for the parameter p=1/,4, and 7 are
similar to their theoretical counterparts (see Fig. 3). For p=9 (the most deceptive case
of f{x)) the final pool (for 7—0) contains almost entirely states with zero functional
values but with a few (usually one) states corresponding to the local minimum with
unit functional value (the state vector is composed of 0s). Therefore the mean value
<f>r as T-»0 asymptotically tends to a small positive value (0./-0.2). This means that
the variance o”(7) tends also to a small positive number and consequently the specific
heat C(T) is fast decreasing as 7—0 (see plot B in Fig. 6). The final optimal state x,,, is
constructed as a state of P with minimal functional value (see eq. (29)). In all our
calculations we have obtained, for all values of the parameter p, the x,,, corresponding
to the correct global minimum (with zero functional value). In summary, the parallel

simulated annealing represents a very robust and stable method.

4. OPTIMIZATION OF CONTINUOS FUNCTIONS
The previous considerations about the method of simulated annealing (and its forced
and parallel extensions) have been formulated for functions defined over the set {0,/
composed of binary vectors of length &. It is easy to demonstrate that this theory is
straightforwardly applicable also for optimization tasks of continuous functions defined

over a hypercube <a,5>",

1D, ={a,b)" > A< R=(~n,») (o)
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then

X, =arg min_f(x) (€2))

xefab)
The vector of variables X = (x, B, TR - N) is composed of N real entries bounded by
a<x < b, for i=1,2,...N. Two different approaches will be used. The first one is
based on the possibility to introduce simple binary representation of real numbers,
where the length of used binary vectors determines the precision of representation. The
second approach uses directly continuos variables without a necessity to apply an
intermediate representation of variables. In this approach the operators of perturbation
should be defined in another way than in the previous Section 3 (see eqs. (23-24) and
(27-28)). It is quite difficult to say something about advantages of the first approach
over the second approach. Loosely speaking, as seems from the current literature [3],
that both are of the same importance and their effectiveness and robustness strongly

depends on the type of optimized functions.

4.1 Binary representation [15]

The bit vectors & = (a,,a,,....ak) € {O,I}k may be interpreted as binary numbers

assigned to nonnegative integers,

k=1
nt(a)=32'a,, (32a)
il
Then, a real number @ < x < b assigned to o is determined by

2”*__“1 ini(a) (32b)

real(a)=a+

Its minimal (maximal) value a (b) is assigned to the bit vector @ composed entirely of
0s (/s). Consequently, the used binary representation of continuous real variables
a <x, <b allows us to “translate” the continuos problem to a discrete one determined
over the set of bit vectors.

In order to illustrate the algorithm let us consider simple case of bit strings of
the length k=3 and assume that the produced real numbers are from the closed interval

[0, 1], the results are summarized in Table 1.
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Table 1

o int(ct) real(o)
000 0 0

001 1 1/7
010 2 2/7
011 3 3/7
100 4 4/7
101 5 517
110 6 6/7
111 7 1

In the framework of this binary representation (k=3) the real variable x €/0,1]
is partitioned by steps 1/7 so that the whole interval /0, /] is composed of eight points
(real numbers, see Table 1).

Accepting the binary representation of real variables, the continuous
optimization problem (31) is transformed to a discrete optimization problem over a
finite domain (it is in many cases of practical importance in spite enormous cardinality).
This means that the method of simulated annealing (see Algorithms 1 to 6) can be used
automatically so that the operator O, is simply realized as the mutation operator
Opma (see egs. (23-24)). Since the construction of the subsets D(}) determined by (6c)
is for continuous functions very difficult, we shall use another (equivalent) type of

distribution of states x

W, (x) = —Q—{ﬂ-exp(—f(x) / T) (332)
Q(T):%exp(—f(x)/ T) (33b)

where x=real(a), for Vae{0,1}*. It means that the summation runs over all states
assigned to binary vectors from {0, 7}*.

In order to illustrate the method of simulated annealing when applied to
optimization of continuous functions with binary representation of variables we use the

following simple function

J(x) = x(x - 1) (4)
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for x & [-1,1]. It has a local minimum at x=-1 and a global minimum at x=/ ./ \/3", see
Fig. 7. The used binary representation of the variable x € /-/,/] uses vectors of length
k=10, i.e. the closed interval /-1, 1] is partitioned by 2=1024 points with increment

determined by Ar =(b—a)/ (2" —1)=2/1023.

2 max B
13

0.0

-2

T }—' 1 p— i |
i3 o 4 /

i 7

Figure 7. Plot of function f{x)=x(x’-1), for xe/-1.1]

Numerical results obtained by the method of simulated annealing with
parameters specified by (26) are displayed in Fig. 8, plots A to E. We see that for mean
value <f>, mean value <f’>, variance o ’(#), and entropy S(T) we get excellent
agreement between the theoretically predicted and calculated plots. The calculated
values of the specific heat C(7) for decreasing sequence of temperatures are plagued
by “fluctuations”, which are caused by numerical errors produced by discrete states.

For more complicated continuous functions (e.g. highly multimodal or
deceptive) the method of simulated annealing with binary representation of variables
can be successfully used for the finding of their global minima. Moreover, approaches
of forcing and/or parallelization are straightforwardly applicable. Usually, these
approaches applied either separately or in their combination provide substantial

increase of the robustness and effectiveness of the simulated annealing.
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Figure 8. Plots of mean value <f> (plot A), mean value <f”> (plot B), variance (7} (plot C),
entropy S(7) (plot D), and specific heat C¢T) (plot E) for function (34) that are constructed
theoretically or calculated by the method of simulated annealing. For the first four macroscopic
quantities we obtain excellent agreement between those calculated from the theory and those ones
b d from distributions generated by the method of simulated anncaling.

4.2 Real representation

The state vector X E(a,b>N of the function ffx) determined by (30) can be

immediately used in the method of simulated annealing when applied to finding the

solution of optimization problem (31). This is simply achieved in that the perturbation

. N
operator Operr modifies a current state X = (]&'J ,xz,...,,r,‘,) € (a,h) to a new state
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vectors x' = (x,’,xz’,...,x,',) €(a‘,b>N by addition random numbers with zero mean
and “standard deviation” o to its entries (cf evolution strategy method [3,4])
ar=0. . [x) (352)
x =x +r(0,0) (35b)
where r(0, g} is a random number specified below. The resulting new entries x’; should
again belong to the closed interval (a,b) , therefore if they are outside of this interval
we have to apply a repair process to ensure, that the resulting value belong to the
interval (a,b)_

It is often postulated that these random numbers satisfy Gauss distribution, then
the quantity o is correctly interpreted as the standard deviation. Since the random
generator of numbers r(0,g) is in the simulated annealing used frequently and
substantially influences the time consumption of the method, we turn our attention to

another technique (much faster than generators of random numbers with Gauss

distribution) based on the so-called logistic distribution (see Fig. 9)

I
= 36
=5 (362)
. Y
w (x)=f"(x)= ;—__(1 =T (36b)

08 /
/f,(x)

I
o JINY L
0 ———————-‘/ \\__

-4 2 0 2 4

Figure 9. Plots of logistic distribution function f,{) and its density @u{X)
for o ~0.5.
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where the positive parameter o (loosely speaking, a standard deviation of logistic
distribution) determines the “width” of density wu{x) . The distribution fx) maps the
whole real axis on the open interval (0,1), fo : R—(0,1). It may be used for simple
construction of random generator of real numbers satisfying logistic distribution.
Solving the equation
S 67
I+e™

for re(0,1) we get

x=cln

(38)
-r

That is, if  is a random number with uniform distribution, then x determined by (38) is
a random number with zero mean and fulfilling the logistic distribution. How to
interpret and determine the parameter o ? Let us require that /00p% random numbers
(for 0<p<1) are generated in the interval (-p, pJ, then

»

Jo,(x)dx=p (39)

-p

Introducing here (36) and after simple manipulations we get
-1
I+
o= p[ln P ] (40)

For instance, if we put p=0.99 (i.e. 99% of generated random numbers belong to

interval (~p, o/, then
1+p

In =ni99=~353 41)

This means that o should be roughly five times shorter than p, provided that 99%
random numbers belong to (-p.0).
In the present version of simulated annealing, which performance is illustrated
by finding of minima of function (34), we used the following parameters
bimax=10", Tae=1.0, Trig=10", @=0.9, 0=0.02 (42)
In order to calculate densities wr(x), the whole interval /-7,/1] is divided into 1000

subintervals, f-7,1] = USESE, 5 where /,={x,,x,/, and x,=a+i(2/1000). 1f a state x

i~

accepted by the Metropolis criterion satisfies x</, then a frequency of appearance
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Zr(xy) (initially empty) is increased by 1 (see eq. (25) and comment above). The density
wr(x) is then approximated by normalized frequencies yr(x;) , i.e. they are multiplied by

an inverse value of their sum. The obtained numerical results are displayed in Fig. 10.
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Figure 10. Plots of mean value </> (plot A), mean value </*> (plot B), variance o”(7) (plot C),
entropy S¢T) (plot D), and specific heat C(T} (plot E) for function (34) constructed theoretically and
calculated by the simulated annealing with real representation of variablcs. Similarly as for binary
rcpresentation (sce Fig. 8) an excellent agreement between theoretically predicted and calculated
macroscopic quantities has been obtained for the first four quantities (plots A to B). For the specific
heat (plot E) the calculated values for smaller p are id
theoretically predicted.

ble greater than those
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5. COMBINATORIAL PROBLEMS
The first big success of the simulated annealing was recorded [7,8] in the field of
combinatorial problems that are notorious due to their NP character [16] (i.e. their
CPU time grows with respect to the problem dimension NonPolynomially, e.g.
exponentially or factorially). We shall study two types of combinatorial problems that
roughly cover their whole diversity.
Type 1. A function fis determined over the symmetric group Sy composed of

all permutations of N objects,

f8S—>A4AcR (43)
where permutations from Sy are denoted by
P=(P:-P:--~-P~) (44)
Optimization problem (5) has now the following form
P, =arg min f(P) (5)

The main difficulty of this problem lies in the fact that Sy contains N/ permutations.
Therefore, for higher values of N its demand on CPU time roughly increases as N/.
Type 2. Let R={1,2,...r} be a set composed of integers /,2,...,r, its direct

product RY contains N-tuplés

:r=(7r,.7r,,...,7r~) (46)
so that its entries belong to the closed interval of integers /1,N]. A function

fRE—>AcR (@7
maps k-tuples (46) onto real numbers from 4, an analogue of the optimization problem
(45)is

T, =arg n_f:g f(fr) (48)

Since the cardinality of R is 7, this task also belongs to the class of NP hard
combinatorial problems, for larger values of r and N it may be even worse than the
previous combinatorial problem, which is “only” a factorial NP-complete problem. For
r=2 the present type of combinatorial problems is equivalent to optimization problems

determined over binary vectors (see Section 3).
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5.1 Traveling salesman problem (TSP)
A graph-theoretical formulation of TSP may be simply done as follows: Let G be a
complete graph composed of N vertices (cities) and N(N-1)/2 edges (connections).
Each edge /ij/. connecting the vertices - cities i and j, is evaluated by a positive
number dfi,j) (called the distance between vertices i and j). A cyclical itinerary (a
Hamiltonian cycle) for a traveling salesman, who must visit just once each of N cities
and return to the starting position, is simply determined by a permutation on N objects,
see (44). It corresponds to an itinerary of going through cities p;, ps, ..., pv and

returning to the initial city p;. We assign to each itinerary P a distance determined by

f(P)=d(pﬂp~)+éd(n,,.n) (49)

The search for permutation P,,, which provides the minimal distance fo,=f(Pop, see
eq. (45), is the main objective of TSP. We see that TSP belongs to the fpe ! of
combinatorial problems, after classification presented at the beginning of section 5.

The NP-completeness of TSP causes that verification of results achieved by
method, which does not search through all possibilities and gives only suboptimal
results, is quite questionable. Therefore, in order to overcome these difficulties, a
special positioning of cities is used. The vertices of graphs are situated at regular
positions for which the optimum length can be deduced. One of such classes is a
complete graph composed of N=p’ vertices, which are situated at nodes of a square

grid. For this special case, the optimum value f,,, is determined by (see Fig. 11)

N=4, f,

opt

=16

N=5,f,=26

api

Figure 11. Two optimal paths on square grid of cven and odd
dimensions. For cven N only horizontal and vertical lines appear, while
for odd N there must be onc cross line. All other paths which do not
satisly this condition have greater distance (49) than the presented ones.
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. {p: {for even p) (50)

p’+1 (for odd p)
where a distance between two juxtaposed vertices on the same line or column is unit
and other distances are calculated in the framework of Hamming (city block, Z,) metric
(see Fig. 12)

1 2 3 4 5 6 71
1 4r— I —0—--——1

6

7 o —o

Figure 12. Square grid of vertices for N=7°=49,
The Hamuming distance (Z,) between two vertices
with row/column indices {5,3) and (3,6) is (see bold
path) d= |5-3|+(3-6]=5. Two juxtaposed vertices on
the same row or column of grid have the unit
distance.

A state of TSP specified by the objective function (49) and by the minimization
problem (45) is represented by a permutation PeSy. Its perturbation onto another

permutation P’eSy

PP ()
is realized by the following three different ways (see Fig. 13).

(1) The transposing operaior, two randomly selected entries of permutation P

indexed by / <7 < j < N are mutually transposed
P=(p]"'p."'p,‘"'p~) (Sza)

P = (et -
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(2) The transporting operator, a segment of permutation £ (specified by
indices / and j) is excised and then inserted into new position specified by &, indices are

randomly selected and specified by /<i<j<k<N,

Pe{gcvoPLaDins bl pies B s B (53a)

Pl B PoaostoPasalpBarili) (53b)
(3) The reversing operator, a segment of permutation F specified by randomly

selected indices 7 and j, where J<7<j<N, is reversed
P :(pf""'pl—l'pv vp..ll---vp,—i’P,vp,wr"'-p]c) (54a)

P S s BB B B ) (54b)

Three types of the perturbation operator are introduced, and applied with the
same probability. Theoretically, the first one (transposing operator) is fully sufficient,
but the other two operators (i.e. transporting and reversing) may substantially influence
[2] the convergence of simulated annealing to a path which is optimal or closely related

to the optimal path.

it
LI | : 5
Transposing Reversing
operator operator

Figure 13. Schematic interpretation of transposing,
transporting, and reversing operators defined by egs. (52) to
54
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An application of the method of simulated annealing to TSP can be performed
by Algerithms 1 and 2. The used square grid is 10x10 (i.e. TSP contains 100 vertices -
cities), the shortest path has the length 10°=100 (see eq. (50)). The used parameters
are

bmax=10°, Tpe=7, Tin=0.01, a=0.9 (55)

= / : -
o Z h ,\N\ﬂ
3 Ly / 5 2
I <f>=100 / S=0 /‘/V
100 t___,a\_f\A_,
20 15 10 o5 oo 05 10 _;-0 15 a0 05 o0 13 10
log Temperuture log Tempersture

Specific beat
8 8 %

Figure 14. Plots of mean value </, entropy and specific heat calculated for TSP on grid 10x10 with
parameters specified by (55). The entropy is approximated by the relation (25), where the cardinalities
D=1

The densities @y()) are approximated by (25), where values of y are discrete points -
integers from the chosen interval [100,600]. Unfortunately, in the present case we are
not able to calculate macroscopic quantities using the given theory. The main reason
for this is, irrespective of the used densities (3) or (6), that not only we cannot “scan™
all states of the system (their number is M) but in addition we do not know the
cardinalities |D(y)| (see (6¢)) (i.e. how many permutations correspond to the same
length (functional value) y={(P’)). That is why entropy cannot be calculated correctly
for the tested problem. Though we are able to approximately calculate the densities
(see (25)), the definition of entropy contains cardinalities |1())| that are, as was

already mentioned, difficult to construct for combinatorial problems. We will try to
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overcome this unpleasant situation in that we put |D(y)| =1 , for each observed value of

the length y . Then the entropy is approximated by

(1)~ Ew,(y)ln[w,(y)] (56)
/ %
Koy I p

Jua=462, T=7.00, <f>=550.26 fu=298, T=2.51, <f>=364.88

pa | g
%mrj

fo=164, T=0.86, <f>=187.71 f=124, T=0.46, <f>=135.33

id
Ipiils

£,=100, T=0.01, <f>=100.00

+

-

Figure 135. Plots of paths for grid 10x10 (i.e. 100 cities) for different temperatures, these paths
were obtained by the simulated annealing method with parameters specified by (55).
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where the densities @r(y) are constructed numerically by (25). The plots of mean value
<f>, entropy and specific heat are displayed in Fig. 14. In Fig. 15 we present paths for
four selected temperatures. These paths are constructed from the permutations P,
that correspond to the currently best solution achieved so far by the simulated
annealing. We see that an “order” is emerging from “chaos™ as the temperature is
decreasing. The final temperature 7., offers a path with length equal to its exact

optimal value determined by (50).

5.2 Number partitioning problem (NPP) [17]
Let Q={q:,4>.....qv} be a set composed of N positive real numbers and let 7 be
a mapping of Q onto a set R~ {1,2,....r}
0= R, (57)
The mapping 7 may be unambiguously expressed as an N-tuple :(ir,,f:;,....m()eR,‘f, .
its entries are interpreted so that 7 is an integer from Ry, assigned to ¢,€Q. The set O
can be decomposed onto r disjoint subsets
0=0,U0,u..0, (58)
where
0 ={q€0; n(q)=i} (59)
The subset (J); is composed of all numbers of () that are mapped by 7 on the integer

ieR. The following type of objective function is defined
f(#@)=max3 q-miny q (60)
T T
It expresses a difference between maximal and minimal sums of numbers from subsets

O, @z ..., Or The main subject of NPP is to look for such a mapping 7z, that

minimizes the objective function f

z,, =argmin f(x) (61)

TeRser
After above classification, NPP belongs to combinatorial problems of the fype 2 (see
beginning of section 5).
How to interpret the above described NPP? Let us imagine a store containing N

articles with known prices g;, ¢z, ..., gx. Our goal is to redistribute store articles onto »
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heaps so that their total prices manifest minimal differences between them (see Fig. 16

and eq. (60)).

set O

T

subset 0, subset O, subset Q.

Figure 16. Schematic decomposition of the set Q, composed of A
articles onto r disjoint subsets - heaps. The goal of NPP is 1o look
for such a d position that dif between sums of “prices”
of articles belonging to subsets are minimal.

The operator Open, from the Metropolis algorithm (see Algorithm 1),
transforming a mapping 7z onto another mapping 7, is now realized by two different

ways (see Fig. 17).

Mutation operator

Transposing operator

T | Rpes T,eee 1:/...11.',,
. o

Figure 17. Diagrammatic illustration of mutation and
transposing operators. The mutation operator changes a
randomly selected entry of the mapping 7 to another feasible
value. The transposing operator mutually exchanges randomly
sclected entries indexed by 7 and /.
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(1) The mutation operator, let us have a mapping 7=(7, m,...,my) and let i be a
randomly selected index, /<i<N. Then 7! is also randomly chosen so that s/ #m and
127! <r. The result of this mutation is a new mapping 7z = (7 ,,....7,_,. 7,7, a7, )

(2) The transposing operator, this operator is determined in a similar way as in
TSP. For a mapping #=(7, ..., aiy) we select randomly two indices 7 and j so that
m#ny and then entries 7 and 7 are mutually transposed. The produced mapping is

TS (e T TG i e Tty Ty T ey T

® " ® .
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Figure 18, Plots of the mean value, entropy and specific heat calculated by the simulated anncaling
when applied to NPP. The mean value </> (see plot A) converges 1o zcro as temperature approaches
zero. This means that simulated annealing provides a correct solution of NPP. The plot B of entropy
was calculated approximatcly.

The method of simulated annealing (see Algorithms 1 and 2) is applied to solve
the optimization problem (61) for N=700 and r=10. This means that the set R;:', of all
mappings 7 contains /0'*" elements, and as will be demonstrated, the simulated
annealing is successful in achieving the correct solution , of this combinatorial
problem of enormous dimension of searching space. In order to know the optimal

solution 7, in advance the set (J is constructed so that it contains 10-times integers 1
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to 10. After simple considerations it is easy to see that a mapping ,, separates () onto
10 subsets O, Os, ..., Qio, composed of integers 1 to 10 just once. That is, the sum of
all integers from subsets (); is the same, with distribution e.g. equal to the sequence

1...10 for each 0,

> q=1+2+.+10=53 (62)
ey

fori=1,2,...,10, and therefore f{,, }=0.
The parameters of simulated annealing used in our calculations are
Toas=7, Toin s ke 10", 2=0.9 (63)
Plots of the mean value, entropy and specific heat are displayed in Fig. 18. The plot A
shows that as T decreases, the mean value <> converges to zero. Consequently, the
simulated annealing provides correct solution 7, with f{7,,J)=0. The plot B
corresponds to the entropy approximately calculated by (56), that is the cardinalities

|D(y)| were set equal to one.

6. Chemical Applications
There are many areas in chemistry, where optimization based on simulated annealing
can be applied. Examples are geometry optimization of protein folding [18], QSAR
[19], best wavelength design for spectroscopy concentration prediction, principal
component analysis, chemical batch process scheduling and many other applications
[20]. Any area with a difficult function to optimize is a potential field for successful
application of simulated annealing.

However, most of applications concern real numbers in continuous space. The
further presented application is not the most typical, as the search space is a discrete
and finite space of structural formulas or molecular graphs. In principle any organic or
inorganic class of compound with covalent bonds can be searched. Nevertheless,
spatial isomerism is out of the scope of the presented example and aromatic bonds can
be specified only by a sequence of alternating single and double bonds.

The optimized property should be easily computable from the structural
formula, probably either with heuristics or with prediction based on regression, as
typical optimization by simulated annealing requires tens of thousands evaluations of

the optimized function. Quite interesting case is optimization of structural formula, so
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that the result corresponds to a molecule with desired property/activity. This problem
has been studied for decades from the opposite direction as a prediction of activity
from a structure. Only when this task is solved, the opposite task can be approached,
i.e. a compound of a certain biological or physicochemical activity is wanted, and it is
up to a program to suggest a promising structure.

Any property or activity easily computable from structural formula would do,
however the most simple example would be using topological indices (which are easily
correlated with other interesting chemical properties like boiling or melting points or
with some biological activity type). The task then would start from desired property by
determining corresponding value of combination of some topological indices. The
value would be obtained from an analytic expression derived from regression analysis
constructed from a training set of a small database of structures and their activities.
Simulated annealing would be then used to find out a structure with the most similar
value of the combination of indices. Similar task has been dealt with during the last few
years by exhaustive generation of structures, followed by structure - activity evaluation
and screening [21,22].

Only recently new approaches based on optimization of a structural formula by
genetic algorithms appear [23,24]. However, they are restricted to linear-type
polymeric structures. The simulated annealing approach has no such restrictions
[25,26]. For clear presentation of the principles of the method [25] the presented
example is restricted only to a simple basic illustration.

For the sake of simplicity, only alkanes with 10 carbon atoms and one ring
were considered. The chemical structures were after removing hydrogen atoms
represented by graphs defined by adjacency matrices. The required properties of
molecular graphs were represented by a convex combination of Wiener and Randic
topological indices. Both these topological indices belong to the most frequently used
topological indices in chemistry for studies of structure vs. property/activity correlation
[27,28]. However, the restriction on carbohydrates and topological indices is not
mandatory, in general any kind of molecules representable by structural formula could
be considered as well as any property easily obtainable from structural formula.

For our application, the control parameters for the algorithm 2 were set at 7.
=5, Twn = 0.001, Kpoe = 10000, oo = 0.9. The initial state was represented by a

randomly generated lower triangle semicanonic [21] adjacency matrix A, i.e. for 10
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atoms and 10 bonds it is a lower triangle of matrix 10x10 with entries a,=1 when
atoms / and j are connected by a bond, and @, = 0 otherwise. The indexing of atoms is
semicanonic, when for any two neighboring rows (the last entry of the longer row is
deleted) their corresponding entries are either equal or for the first nonequal entries the
upper row has 1, where the lower row has 0. This restriction reduces the search space,
keeps us from dealing with many matrices describing the same molecule with different
indexing of atoms. Each row of the lower-triangle part must also contain at least one
“I"" entry (this simple condition ensures that the resulting adjacency matrix corresponds
to the connected graph). Morgover, restricting structures to molecular graphs, one has
to check whether valences of vertices are not greater than the prescribed threshold
value (e.g. four for saturated hydrocarbons).

A perturbation is performed by removing the lower part of the triangle matrix,
starting from a randomly chosen row. The deleted part of the adjacency matrix is again
randomly generated (see Fig. 19), satisfying semicanonicity and other restrictions. Of
course, there exist many other ways how to define the perturbation, e.g. moving an
arbitrary edge somewhere else, but there are always problems with preserving

semicanonicity and other restrictions,
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1[X 1[X
21X 21 x
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g 501 00X perturbation 510 1 0 0 X
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g B0000101X B0000100X
E p00000001X sfpooooo 10X
S 000000001X 100 0000001 1X
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5 &5 ®m %
g 2_5 10 perturbation 4 1 -
4 7 9

Figure 19. Illustrative example of the perturbation process of a semicanonic adjacency matrix A onto
other semicanonic adjacency matrix 4’ Starting from a randomly sclected perturbation point, lower
triangle rows are randomly generated so that the resulting matrix is semicanonic and corresponds (o a
graph with p vertices and ¢ edges.




The energy of the system is replaced by a function defined as difference

between the required (¥.,;) and current property value (x(G)) of graph G,
HG) =] 2(6) - 2,

(64)
where the function 3(G) represents a hypothetical (physicochemical or biological)

property determined as a convex combination of Randic and Wiener topological

indices
2(G)=03(G)+(1-w)x,(G) (65)
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Figure 20. Graphs obtained at different values of formal p called P ¢ 7"in the course

of simulated anncaling reconstruction of a structural formula with a weighted sum of Wicner and
Randic indices corresponding to a simple ring composed of 10 vertices, where all vertices arc of the
same valence cqual to 2. As the temperature approaches zero, the graphs have larger and larger rings
and their values y(G) approach the desired value. Starting from the temperatures smaller than 0.0025
only the correct ring appears.

where 0<@=</ (in our calculations we have used w-0.5). The Randic topological index

[27] is defined by xR(G) = )_“[V‘V.] cE i/.fval(v) val(v') , where the summation runs
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over all edges [v,v']€E of the graph G and symbols val(v) and val(v') denote valences

of wvertices v and Vv, respectively. The Wiener topological index [28]

1wl(G) =12 ZF:% d(v,v"), where the summation runs over all pairs of distinct
VEV

vertices v,v’ &V, and d(v,v’) denotes the graph distance between vertices v and v,

To test the approach we had to choose such properties, for which we already
knew the correct answer. The testing was done with %(G) corresponding to a simple
ring of 10 vertices. The simulated annealing method gave this correct result. Moreover,
we have recorded the best solutions obtained so far in the course of simulated
annealing and it was observed that it was equal, after a few iterations of temperature
decreases, to the correct results. In Figure 20 are displayed graphs, produced by the
simulated annealing method for different temperatures. We see that as the temperature
is decreasing the graphs are more and more similar to the required simple ring, for
sufficiently low temperature they are identical to the simple ring,

Other test involved assigning a paticular “C NMR chemical shift to the
corresponding alkane carbon atom from a set of all C;-Co alkanes [25]. The program
had always proposed suitable structures, the only inaccuracies were caused by

regression.

7. DISCUSSION
The method of simulated annealing is formulated in the present paper as a
generalization of “physical (simulated) annealing” applied to a hypothetical system
determined by an objective function f{x) defined over a domain D. Then many of
concepts and notions of statistical physics can be immediately used as proper quantities
to describe “global and/or macroscopic” properties of the simulated annealing. We did
not discuss the very important parameters Anao Imas Tmim and @ (see paragraph below
eqs. (3a-b})). The main reason for this is, that although these parameters are frequently
studied in the simulated annealing literature [5,6] and a lot of formulae and
recommendations were suggested, the values of these parameters are strongly
problem-dependent. That is, each author usually gives an independent recipe how to
determine the basic parameters of his version and/or application of the simulated

annealing method. The main purpose of this article was to give a general outline of
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universal features of the simulated annealing as an optimization method of large scale
problems of multimodal as well as of combinatorial character. In particular, its
numerical efficiency is excellent for almost all applications if only suboptimal solutions
closely related to the correct ones are required. The algorithmic implementation of the
simulated annealing is very simple, it does not require any special programming tricks
and techniques. On other hand, the simulated annealing method should not be
understood as a universal algorithm in a sense that standard procedure may be applied
to an arbitrary problem. Each new optimization problem requires some preliminary
study in which one specifies (1) the numerical representation of state variables, (2) the
definition of perturbation operator that transforms a state onto another state (which is
in the neighborhood of the original state), and (3) the type of objective function to be
minimized. If this first stage is accomplished successfully, then in the second stage we
are ready to use the method of simulated annealing, e.g. in the form of Algorithms 1
and 2. Moreover, in order to test the used application of simulated annealing it is
worthwhile to test its efficiency for simple model examples for which correct solutions
may be simply deduced and numerical values of basic control parameters tuned.

In 1989 Goldberg et al. [29-31] tried to overcome some difficulties of genetic
algorithm with the so-called deceptive optimization problems, i.e. problems that are
multimodal with many local minima but only with one global (deceptive) minimum,
separated by a barrier from other minima (see Fig. 2). They suggested the messy
genetic algorithm, where the main departure from the standard genetic algorithm
consists in the using special data structure called the messy chromosome. Recently, the
concept of messy chromosomes was successfully used in the framework of simulated
annealing by present authors [32]. The produced version of messy simulated annealing
is very robust and effective, it solved correctly all model functions that were used by
Goldberg as the test of effectiveness of the messy genetic algorithm.

In order to place simulated annealing within other stochastic optimization
algorithms, it is necessary to compare it mainly with genetic algorithms. Although
simulated annealing has theoretical advantage of the possibility to achieve absolute
minimum, it can be achieved only by a very slow lowering of temperature, with
enormous requirements on CPU time. Since in practical applications the temperature
decreases faster than required the result may not be optimal. The quality of results in

simulated annealing can be better controlled in comparison with genetic algorithms; in
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particular, when using smaller &,,.. we can exchange optimality of result for speed of
computation, a fate that can be hardly achieved in genetic algorithm. Genetic
algorithms might give better results for more ragged landscape of function, but as it is
shown in parallel simulated annealing, both methods can be merged to produce better
results than each method separately. It cannot be stated in advance, which of the two
methods works better for some problem, this question can be solved only by
computations with tuned parameters. Genetic algorithms are generally better for
problems of simulations of evolution in nature, while simulated annealing is better for

large scale optimization, where it is enough to have as a result just one solution.
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