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A central problem in molecular biology is understanding the mechanism by which
enzymes carry out chemical transformations. The problem is challenging because
most experimental techniques provide only a static snapshot, not a moving pic-
ture, of the sequence of molecular events that take place inside the catalytic core
of the enzyme. For one class of enzymes, however, mathematics provides a pow-
erful tool to the molecular biologist. These enzymes are the ones that perform
topological reactions necessary for the winding, unwinding, recombination, and
transposition of DNA. Using topological results about knots and tangles, one can
peer into the reaction center and infer the mechanisms of action.

INTRODUCTION

One of the important issues in molecular biology is the three-dimensional structure
(shape) of proteins and deoxyribonucleic acid (DNA) in solution in the cell, and the relation-
ship between structure and function. Ordinarily, protein and DNA structure is determined by
X-ray crystallography or electron microscopy. Because of the close packing needed for crys-
tallization and the manipulation required to prepare a specimen for electron microscopy, these
methods provide little direct evidence for molecular shape in solution. The three-dimensional
shape in solution is of great biological significance but is very difficult to determine (Wang,
1982).

Experimental techniques such as X-ray crystallography and nuclear magnetic resonance

provide ways to infer precise distances between atoms. However, these methods are not well
suited to studying the dynamic mechanism by which enzymes act. Interestingly, topology can
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shed light on this key issue. The topological approach to enzymology is an experimental pro-
tocol in which the descriptive and analytical powers of topelogy and geometry are employed
in an indirect effort to determine the enzyme mechanism and the structure of active enzyme-
DNA complexes in vitro (in a test tube) (Wasserman and Cozzarelli, 1986; Sumners, 1987a).
Once the enzyme structure and mechanism are understood in a controlled laboratory situation,
this knowledge can be extrapolated to enzyme mechanism in vivo, that is, in a living cell.

Topology is a branch of mathematics related to geometry. It is often characterized as
“rubber-sheet geometry,” because topological equivalence of spaces allows stretching,
shrinking, and twisting of an object in order to make it congruent to another object. Topology
is the study of properties of objects (spaces) that are unchanged by allowable elastic deforma-
tions. When a given topological property differs for a pair of spaces, then one can be sure that
one space cannot be transformed into the other by elastic deformation. Changes that can pro-
duce non-equivalent spaces include cutting the space apart and reassembling the parts to pro-
duce another space. It is precisely this topological breakage and reassembly of DNA that
characterizes the mechanism of some life-sustaining cellular enzymes, enzymes that facilitate
replication, transcription, and transposition. Chapter 6 describes aspects of the geometry and
topology of DNA and points out various topological transformations that must be performed
on DNA by enzymes in order to carry out the life cycle of the cell. In the present chapter, we
describe how recent results in three-dimensional topology (Culler et al., 1987, Ernst and
Sumners, 1990; Sumners, 1990, 1992) have proven to be of use in the description and quanti-
zation of the action of these life-sustaining enzymes on DNA.

THE TOPOLOGY OF DNA

The DNA of all organisms has a complex and fascinating topology. It can be viewed as
two very long curves that are intertwined millions of times, linked to other curves, and sub-
Jjected to four or five successive orders of coiling to convert it into a compact form for infor-
mation storage. If one scales the cell nucleus up to the size of a basketball, the DNA inside
scales up to the size of thin fishing line, and 200 km of that fishing line are inside the nuclear
basketball. Most cellular DNA is double-stranded (duplex), consisting of two linear back-
bones of alternating sugar and phosphorus. Attached to each sugar molecule is one of the four
bases (nucleotides): A = adenine, T = thymine, C = cytosine, G = guanine. A ladder whose
sides are the backbones and whose rungs are hydrogen bonds is formed by hydrogen bonding
between base pairs, with A bonding only with T, and C bonding only with G. The base pair
sequence for a lincar segment of duplex DNA is obtained by reading along one of the two
backbones, and is a word in the letters {A,T,C,G}. Due to the uniqueness of the bonding part-
ner for each nucleotide, knowledge of the sequence along one backbone implies knowledge of
the sequence along the other backbone. In the classical Crick-Watson double helix model for
DNA, the ladder is twisted in a right-hand helical fashion, with an average and nearly con-
stant pitch of approximately 10.5 base pairs per full helical twist. The local helical pitch of
duplex DNA is a function of both the local base pair sequence and the cellular environment in
which the DNA lives; if a DNA molecule is under stress, or constrained to live on the surface
of a protein, or is being acted upon by an enzyme, the helical pitch can change. Duplex DNA
can exist in nature in closed circular form, where the rungs of the ladder lie on a twisted cyl-
inder. Circutar duplex DNA exists in the mitochondria of human cells. for example. Duplex



DNA in the cell nucleus is a lincar molecule, one that is topologically con-strained by peri-
odic attachment to a protein scaffold in order to achieve efficient packing.

The packing, twisting, and topological constraints all taken together mean that topological
entanglement poses serious functional problems for DNA. This entanglement would interfere
with, and be exacerbated by, the vital life processes of replication, transcription, and recom-
bination (Cozzarelli, 1992). For information retrieval and cell viability, some geometric and
topological features must be introduced into the DNA, and others quickly removed (Wang,
1982, 1985). For example, the Crick-Watson helical twist of duplex DNA may require local
unwinding in order to make room for a protein involved in transcription to attach to the DNA,
The DNA sequence in the vicinity of a gene may need to be altered to include a promoter or
repressor. During replication, the daughter duplex DNA molecules become entangled and
must be disentangled in order for replication to proceed to completion. After introduction of
these life-sustaining changes in DNA geometry and topology, and after the process that these
changes make possible is finished, the original DNA conformation must be restored. Some
enzymes maintain the proper gcometry and topology by passing one strand of DNA through
another by means of a transient enzyme-bridged break in one of the DNA strands, a move
performed by topoisomerases. Other enzymes break the DNA apart and recombine the ends
by exchanging them, a move performed by recombinases. The description and quantization of
the three-dimensicnal structure of DNA and the changes in DNA structure due to the action of
these enzymes have required the serious use of geometry and tepology in molecular biology.
Geometry and topology provide ways of inferring the dynamic process of topological trans-
formation carried out by an enzyme. This use of mathematics as an analytic tool for the indi-
rect determination of enzyme mechanism is especially important because there is no experi-
mental way to observe the dynamics of enzymatic action directly.

In the experimental study of DNA structure and enzyme mechanism, biologists developed
the topological approach to enzymology (Wasserman and Cozzarelli, 1986; Sumners, 1987b).
In this approach, one performs experiments on circular substrate DNA molecules. These cir-
cular substrate molecules are genetically enginecred by cloning techniques to contain regions
that a certain enzyme will recognize and act upon. The circular form of the substrate molecule
traps an enzymatic topological signature in the form of DNA knots and links (catenanes).
Trapping such a topological signature is impossible if one uses lincar DNA substrate. These
DNA knots and links are observed by gel electrophoresis and electron microscopy of the re-
action product DNA molecules. By observing the changes in geometry (supercoiling) and to-
pology (knotting and linking) in DNA caused by an enzyme. the enzyme mechanism can be
described and quantized. Figure la gives the schematics of the topological enzymology proto-
col; the black box represents the dynamic reaction in which the enzyme attaches to the DNA
substrate, breaks it apart and reconnects as necessary, and then releases the DNA products.
Typical results of this experimental protocol are the reaction products displayed in Figure 1b
and ¢. Figure 1b shows the electron micrograph of a DNA (+) figure eight catenane (Krasnow
et al., 1983), and Figure 1c¢ shows a micrograph of the DNA knot 6,* (Wasserman et al.,
1985). Both are products of processive Tn3 recombination and are explained in detail below.

The topological approach to enzymology poses an interesting challenge for mathematics:
from the observed changes in DNA geometry and topology. how can one mathematically de-
duce enzyme mechanisms? This requires the construction of mathematical models for enzyme
action and the use of these models to analyze the results of topological enzymology experi-
ments. The entangled form of the product DNA knots and links contains information about
the enzymes that made them. Mathematics is required to extract mechanism information from



Figure 1 (a} Topological approach to enzymolegy. (b) DNA (+) figure eight catenane. (¢} DNA knot 6;, Figure 1b re-

printed, with permission, from Krasnow et al. (1983). Copyright © 1983 by Macmillian Magazines Limited. Figure lc
reprinted, by permission, from Wasscrman ¢t al. (1985). Copyright © 1985 by the American Association for the Advance-
ment of Science

the topological structure of the reaction products. In addition to utility in the analysis of ex-
perimental results, the use of mathematical models forces all of the background assumptions
about the biology to be carefully laid out. At this point they can be examined and dissected
and their influence on the biological conclusions drawn from experimental results can be de-
rermined.

SITE-SPECIFIC RECOMBINATION

Site-specific recombination is one of the ways in which nature alters the genetic code of
an organism, either by moving a block of DNA to another position on the molecule (a move
performed by transposase) (Sherratt et al., 1984) or by integrating a block of alien DNA into a
host genome (a move performed by integrase). One of the biological purposes of recombina-
tion is the regulation of gene expression in the cell, because it can alter the relative position of
the gene and its repressor and promoter sites on the genome. Site-specific recombination also
plays a vital role in the life cycle of certain viruses, which utilize this process to insert viral
DNA into the DNA of a host organism. An enzyme that mediates site-specific recombination
on DNA is called a recombinase. A recombination site is a short segment of duplex DNA
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whose sequencc is recognized by the re-
combinasc. Site-specific recombination
can occur when a pair of sites (on the
same or on different DNA molecules) be-
come juxtaposed in the presence of the
recombinase. The pair of sites is aligned
through enzyme manipulation or random
thermal motion (or both), and both sites
(and perhaps some contiguous DNA) arc
then bound by the enzyme. This stage of
the reaction is called synapsis, and we
will call this intermediate protein-DNA
complex formed by the part of the sub-
strate that 1s bound to the enzyme fo-
gether with the enzyme itself the synap-
tosome (Benjamin and Cozzarelli, 1990;
Heichman and Johnson, 1990; Pollock
and Nash, 1983; Griffith and Nash, 1985;
Kim and Landy, 1992). We will call the
entire DNA molecule(s) involved in syn-
apsis (including the parts of the DNA
molecule(s) not bound to the enzyme), together with the enzyme itself, the synaptic complex.
The electron micrograph in Figure 2 shows a synaptic complex formed by the recombination
enzyme Tn3 resolvase when reacted with unknotted circular duplex DNA. In the micrograph
of Figure 2, the synaptosome is the black mass attached to the DNA circle, with the unbound
DNA in the synaptic complex forming twisted loops in the exterior of the synaptosome. It is
our intent to deduce mathematically the path of the DNA in the black mass of the synap-
tosome, both before and after recombination. We want to answer the question: How is the
DNA wound around the enzyme, and what happens during recombination?

F.n

Figure 2 Tn3 synaptic complex. (Courtesy of N.R. Cozzarelli.)

After forming the synaptosome, a single recombination event occurs: the enzyme then
performs two double-stranded breaks at the sites and recombines the ends by exchanging
them in an enzyme-specific manner. The synaptosome then dissociates, and the DNA is re-
leased by the enzyme. We call the pre-recombination unbound DNA molecule(s) the substrate
and the post-recombination unbound DNA molecule(s) the product. During a single binding
encounter between enzyme and DNA,| the enzyme may mediate more than one recombination
event; this is called processive recombination. On the other hand, the enzyme may perform
recombination in multiple binding encounters with the DNA, which is called distributive re-
combination. Some site-specific recombination enzymes mediate both distributive and
processive recombination.

Site-specific recombination involves topological changes in the substrate. In order to
identify these topological changes, one chooses to perform experiments on circular DNA
substrate. One must perform an experiment on a large number of circular molecules in order
to obtain an observable amount of product. Using cloning techniques, one can synthesize cir-
cular duplex DNA molecules, which contain two copies of a recombination site. At each re-
combination site, the base pair sequence is in general not palindromic (the base pair sequence
for the site read left-to-right is different from the base pair sequence read right-to-left), and
hence induces a local orientation (arrow) on the substratc DNA circle. If these induced orien-
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a. Substrate b. Pre-recombination
synaptic complex

¢. Post-recombination d. Product
synaptic complex

Figure 3 A single recombination event: direct repeats.

tations from a pair of sites on a single circular molecule agree, this sitc configuration is called
direct repeats (or head-to-tail}, and if the induced orientations disagree, this site configuration
is called inverted repeats (or head-to-head). If the substrate is a single DNA circle with a sin-
gle pair of directly repeated sites, the recombination product is a pair of DNA circles and can
form a DNA link (or catenane) (Figure 3). If the substrate is a pair of DNA circles with one
site each, the product is a single DNA circle (Figure 3 read in reverse) and can form a DNA
knot (usually with direct repeats). In processive recombination on a circular substrate with
direct repeats, the products of an odd number of rounds of processive recombination are DNA
links, and the products of an even number of rounds of processive recombination are DNA
knots. If the substrate is a single DNA circle with inverted repeats, the product is a single
DNA circle and can form a DNA knot. In all figures where DNA is represented by a line
drawing (such as Figure 3), duplex DNA is represented by a single line, and supercoiling is
omitted.

The experimental strategy in the topological approach to enzymology is to observe the
enzyme-caused changes in the geometry and topology of the DNA and to deduce the enzyme
mechanism from these changes, as in Figure la. The geometry and topology of the circular
DNA substrate are experimental control variables. The geometry and topology of the recom-
bination reaction products are observables. In vitro experiments usually proceed as follows:
Circular substrate is prepared, with all of the substrate molecules representing the same knot
type (usually the unknot, that is, a curve without knots). The amount of supercoiling of the
substrate molecules (the supercoiling density) is also a control variable. The substrate mole-
cules are reacted with a high concentration of purified enzyme, and the reaction products are
fractionated by gel electrophoresis. DNA molecules are naturally.

negatively charged, with the amount of negative charge proportional to the molecular weight.
A gel is a resistive medium through which the DNA molecules can be forced to migrate under
the influence of an ¢lectric field. The DNA sample is placed at the top of a gel column, and
similar molecules migrate through the gel with similar velocities, forming discrete DNA
bands in the gel when the electric field is turned off. Normally, gel electrophoresis discrimi-
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nates among DNA molecules on the basis of molecular weight; given that all molecules are
the same molecular weight (as is the case in these topological enzymology experiments).
electrophoresis discriminates on the basis of subtle differences in the geometry (supercoiling)
and topology (knot and link type) of the DNA molecules. For example, in unknotted DNA,
gel electrophoresis discriminates on the basis of number of supercoils and can detect a differ-
ence of one in the number of supercoils. In gel electrophoresis of knotted and linked DNA,
one must nick (break one of the two backbone strands of) the reaction products prior to elec-
trophoresis in order to relax the supercoils in the DNA knots and links, because supercoiling
confounds the gel migration of knotted and linked DNA. For nicked DNA knots and links.
under the proper conditions gel velocity is (surprisingly) determined by the crossing number
of the knot or link; knots and links of the same crossing number migrate with the same gel
velocities (Dean et al., 1985); the higher the crossing number, the greater the gel mobility,
After the gel 1s run, the gel bands are excised, and the DNA molecules are removed from the
gel and coated with RecA protein. It is this new observation technique (RecA-enhanced elee-
tron microscopy) (Krasnow et al., 1983) that makes possible the detailed knot-theoretic
analysis of reaction products. RecA is an E. coli protein that binds to DNA and mediates gen-
eral recombination in £. coli. Naked (uncoated) duplex DNA is approximately 20 angstroms
in diameter, and RecA-coated DNA is approximately 100 angstroms in diameter. The process
of RecA coating fattens, stiffens, and stretches (untwists) the DNA. This fattening and stiffen-
ing facilitates the unambiguous determination of crossings (nodes) in an electron micrograph
of a DNA knot or link and reduces the number of extraneous crossings. After RecA coating,
the DNA is shadowed with platinum for viewing under the electron microscope. Electron mi-
crographs of the reaction products (Figure 1b and c) are made, and frequency distributions of
knot types of the products are prepared. This new precision in the determination of the topol-
ogy of the reaction product spectrum opens the door for the building of detailed topological
models for enzyme action.
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TOPOLOGICAL TOOLS FOR DNA ANALYSIS

In this section, we will describe the parts of knot theory and tangle calculus of biological
relevance. We give intuitive definitions that appeal to geometric imagination. For a rigorous
mathematical treatment we refer the reader to Burde and Zieschang (1985), Kauffman (1987),
and Rolfsen (1990) for knot theory and Ernst and Sumners (1990) for tangle calculus.

Knot theory is the study of the entanglement of flexible circles in 3-space. The equiva-
lence relation between topological spaces is that of homeomorphism. A homeomorphism
X — Y between topological spaces is a function that is one-to-one and onto, and both 4 and
h”" are continuous. An embedding of X in Y is a function f:X — ¥ such that fis a homeo-
morphism from X onto f(X)c Y. An embedding of X in Y is the placement of a copy of X
into the ambient space Y. We will usually take Euclidean 3-space R® (xyz-space) as our
ambient space. A knot K is an embedding of a single circle in R’; a link L is an embedding of
two or more circles in R*. For a link, each of the circles of L is called a component of L. In
chemistry and biology a nontrivial link is called a catenane, from the Latin cataena for
“chain,” since the components of a catenane are topologically entangled with each other like
the links in a chain. In this excursion, we will restrict attention to dimers, that is, links of two
components, because dimers are the only links that turn up in topological enzymology
experiments. We regard two knots (links) to be equivalent if it is possible to continuously and
elastically deform one embedding (without breaking strands or passing strands one through
another) until it can be superimposed upon the other. More precisely, if X, and K, denote
two knots (links) in R’, they are equivalent (written K, =K, ) if and only if there is a
homeomorphism of pairs A:(R”,K,)— (R*,K,) that preserves orientation on the ambient
space R’. We take our ambient space R* to have a fixed (right-handed) orientation, where
the right-hand thumb corresponds to the X-axis, the right-hand index finger corresponds to the
Y-axis, and the right-hand middle finger corresponds to the Z-axis. R’ comes locally
equipped with this right-handed orientation at all points. A homeomorphism from R* to R’
is orientation-preserving if the local right-handed frame at each point of the domain maps to a
local right-handed frame in the range. Reflection in a hyperplane (such as reflection in the xy-
plane by f:(x.y.z) = (x.y.~2) ) reverses the orientation of R’. We might also require that the
circular subspace K come equipped with an orientation (usually indicated by an arrow). If so,
we say that our knot or link X is oriented; if not, we say that it is unoriented. Unless otherwise
specified, all of our knots will be unoriented. The homeomorphism of pairs & superimposes
K, on K,; in this case the knots (links) can be made congruent by a flexible motion or flow

(ambient isotopy) of space. An ambient isotopy is a 1-parameter family of homeomorphisms
{H}!., of R that begins with the identity and ends with the homeomorphism under
consideration: H, = identity and H, = h. An equivalence class of embeddings is called a knot
(link) type.

A knot (link) is usually represented by drawing a diagram (projection) in a plane. This
diagram is a shadow of the knot (link) cast on a plane in 3-space. By a small rigid rotation of
the knot (link) in 3-space, it can be arranged that no more than two strings cross at any point
in the diagram. For short, crossing points in a diagram are called crossings. In the figures in
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this chapter, at cach crossing in a diagram, the undercrossing string is depicted with a break in
it, so that the three-dimensional knot (link) type can be uniquely re-created from a two-
dimensional diagram. Figure 4a-e shows standard diagrams (Rolfsen, 1990) for the knots and
links that turn up in Tn3 recombination experiments. In the definition of knot type, we
insisted that the transformation that superimposes one knot on another must be orientation-
preserving on the ambient space. This restriction allows us to detect a property of great
biological significance: chirality. The mirror image of a knot (link) is the configuration
obtained by reflecting the configuration in a plane in R’. Starting with a diagram for a knot
(link), one can obtain a diagram for the mirror image by reversing each crossing; the
underpass becomes the overpass and vice versa (compare Figure 4d and 4e). If K denotes a

knot (link), let K" denote the mirror image. If K= K', then we say that K is achiral; if
K#K | then we say that K is chiral. For example, the Hopf link (Figure 4a) and the figure
eight knot (Figure 4b} are achiral, and the (+) Whitehead link (Figure 4c) and the knot 6

(Figure 4d) and its mirror image 6 (Figure 4¢) are chiral. Moreover, all the knots and links in
Figure 4 are prime, that is, they cannot be formed by the process of tying first one knot in a
string and then another.

By moving the knot around in space and then projecting it, it is clear that every given knot
(link) type admits infinitely many “different” diagrams, and so the task of recognizing that
two completely different diagrams represent the same knot type can be exceedingly difficult.
[n order to make this job a bit easier, one usually secks diagrams for the knot type with a
minimal number of crossings. This minimal number is called the crossing number of the knot
(link) type. The projections in Figure 4 are minimal. Crossing number is a topological
invariant of knot type. A topological invariant is a number, algebraic group, polynomial, and
so on that can be unambiguously attached to a knot (link) type. Most invariants can be
algorithmically computed from diagrams (Burde and Zieschang, 1985: Crowell and Fox,
1977; Lickorish, 1988; Kauffman, 1987). If any invariant differs for two knots (links), then
the two knots (links) are of different types. 1f all known invariants are identical, the only
conclusion that can be reached is that all known invariants fail to distinguish the candidates.
One must then either devise a new invariant that distinguishes the two or prove that they are
of the same type by construction of the homeomorphism that transforms one to the other
(often by direct geometric manipulation of the diagram or by manipulation of string models).
Nevertheless, it is possible to devise invariants (algebraic classification schemes) that
uniquely classify certain homologous subfamilies of knots and links, for example, torus knots,
two-bridge knots (4-plats), and so on. The algebraic classification schemes for these
homologous subfamilies can be used to describe and compute enzyme mechanisms in the
topological enzymology protocol.

Fortunately for biological applications, most (if not all) of the circular DNA products
produced by in vitro enzymology experiments fall into the mathematically well-understood
family of 4-plats. This family consists of knot and link configurations produced by patterns of
plectonemic supercoiling of pairs of strands about each other. All “small” knots and links are
members of this family—more precisely, all prime knots with crossing number less than §
and all prime (two-component} links with crossing number less than 7 are 4-plats. A 4-plat is
a knot or two-component link that can be formed by platting (or braiding) four strings.
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Figure 4 (a) Hopf link. (b) figure eight knot, (c) (+) Whitchead link, (d) 6.1 ,and (e)

6, (mirror image of 63 ).

All of the knots and links of Figure 4 are 4-plats; their standard 4-plat diagrams are shown in
Figure 5. Each standard 4-plat diagram consists of four horizontal strings, numbered 1
through 4 from top to bottom. The standard pattern of plectonemic interwinding for a 4-plat is
encoded by an odd-length classifying vector with positive integer entries <c,,c;,...,c5.,,> , 88
shown in Figure 5. Beginning from the left, strings in positions 2 and 3 undergo ¢, left-
handed plectonemic interwinds (half-twists), then strings in positions 1 and 2 undergo c,
right-handed plectonemic interwinds, then strings in positions 2 and 3 undergo c, left-handed
plectonemic interwinds, and this process continues until at the right the strings in positions 2
and 3 undergo c¢,,,, left-handed plectonemic interwinds. In the standard diagram for a 4-plat,
the string in position 4 is not involved in any crossing. The vector representation for the
standard diagram of a 4-plat is unique up to reversal of the symbol. That is, the vector
<Cyp,12Cap o€ > TEprEsents the same type as the vector <c,cy.....¢,,.,> , because turning the
4-plat 180° about the vertical axis reverses the pattern of supercoiling. The standard 4-plat
diagram is alternating; that is, as one traverses any strand in the diagram, one alternately
encounters over- and undercrossings. Also, standard 4-plat diagrams (with the exception of
the unknot <13 ) are minimal (Ernst and Sumners, 1987).



- 61

Figure 5. Standard 4-plats. (a) <2 > Hopflink, (b) <2,1,1> figure cight knot, {c)
<LLLLI> (+) figure eight catenane, (d) <1,2.L,11> 6,* and () <3,1,2> 6,.

For in vitro topological enzymology, we can regard the enzyme mechanism as a
machine that transforms 4-plats into other 4-plats. We nced a mathematical language for
describing and computing these enzyme-mediated changes. In many enzyme-DNA reactions.,
a pair of sites that are distant on the substrate circle are juxtaposed in space and bound to the
enzyme. The enzyme then performs its topelogical moves, and the DNA is then released. We
need a mathematical language to describe configurations of linear strings in a spatially
confined region. This is accomplished by means of the mathematical concept of tangles.
Tangles were introduced into knot theory by IL.H. Conway (1970) in a seminal paper
involving construction of enumeration schemes for knots and links. The unit 3-ball B® in R*
is the set of all vectors of length <1. The boundary 2-sphere $*=2B" is the set of all

vectors of length 1. The equator of this 3-ball is the intersection of the boundary §°
with the xy-plane; the equatorial disk is the intersection of B* with the xyv-plane. On the unit
3-ball, select four points on the equator (called NW, SW, SE, NE). A 2-string tangle in the
unit 3-ball is a configuration of two disjoint strings in the unit 3-ball whose endpoints are the
four special points {NW,SW.SENE}. Two tangles in the unit 3-ball are equivalent if it is
possible to elastically transform the strings of one tangle into the strings of the other
without moving the endpoints {NW SW, SENE} and without breaking a string or passing
one string through another. A class of equivalent tangles is called a tangle type. Tangle theory
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Figure 6. Tangles. (a) Rational, (b) locally knotted, (¢) prime, and (d)
trivial.

is knot theory done inside a 3-ball with the ends of the strings firmly glued down. Tangles are
usually represented by their projections, called tangle diagrams, onto the equatorial disk in the
unit 3-ball, as shown in Figure 6. In all figures containing tangles, we assume that the four
boundary points {NW.SW,SE,NE} are as in Figure 6a, and we suppress these labels,

All four of the tangles in Figure 6 are pairwise inequivalent. However, if we relax the
restriction that the endpoints of the strings remain fixed and allow the endpoints of the strings
to move about on the surface (8°) of the 3-ball, then the tangle of Figure 6a can be
trans-formed into the trivial tangle of Figure 6d. This can be accomplished by rotating (on
§%) the {NESE} endpoints one left half-turn (180°) about each other, then rotating the
1SW,SE} endpoints three right half-turns about each other, and finally rotating the {NE.SE}
endpoints two left half-turns about each other. The tangles in Figures 6b and 6¢ cannot be
transformed to the trivial tangle by any sequence of such turning motions of the endpoints on
§°. The family of tangles that can be converted to the trivial tangle by moving the endpoints
of the strings on §° is the family of rational tangles. Equivalently, a rational tangle is one in
which the strings can be continuously deformed (leaving the endpoints fixed) entirely into the
boundary 2-sphere of the 3-ball, with no string passing through itself or through another
string.

Rational tangles form a homologous family of 2-string configurations in B® and are
formed by a pattern of plectonemic supercoiling of pairs of strings. Like 4-plats, rational
tangles look like DNA configurations, being built up out of plectonemic supercoiling of pairs
of strings. More specifically, enzymes are often globular in shape and are topologically



- 63 -

D&

=
S

Figure?. Tangle diagrams. (a) (2.3.1). (b) (=3.0), (c) (0), (d) {0,0), (e) (1), and () (-1).

equivalent to our unit defining ball B'. Thus, in an enzymatic reaction between a pair of
DNA duplexes, the pair {enzyme, bound DNA} forms a 2-string tangle. Since the amount of
bound DNA is small, the enzyme-DNA tangle so formed will admit projections with few
nodes and therefore is very likely rational. For example, all locally unknotted 2-string tangles
having less than five crossings are rational. There is a second, more natural argument for
rationality of the enzyme-DNA tangle. In all cases studied intensively, DNA is bound to the
surface of the protein. This means that the resulting protein-DNA tangle is rational, since any
tangle whose strings can be continuously deformed into the boundary of the defining ball is
automatically rational.

A classification scheme for rational tangles is based on a standard form that is a
minimal alternating diagram. The classifying vector for a rational tangle is an integer-entry
vector (a,d,...,a,) of odd or even length, with all entries (except possibly the last) nonzero

and having the same sign, and with |a,|>1. The integers in the classifying vector represent
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N(B) = Link

NI=3,0) + (1)) = <2>

Figure 8. Tangle operations. (a) Tangle addition, (b} tangle closure, and (c)
N(=30y+ (1)) =<2 >

the left-to-right (west-to-cast) alternation of vertical and horizontal windings in the standard
tangle diagram, always ending with horizontal windings on the east side of the diagram.
Horizontal winding is the winding between strings in the top and bottom (north and south)
positions; vertical winding is the winding between strings in the left and right (west and east)
positions. By convention, positive integers correspond to horizontal plectonemic right-handed
supercoils and vertical lefi-handed plectonemic supercoils; negative integers correspond to
horizontal left-handed plectonemic supercoils and vertical right-handed plectonemic
supercoils. Figure 7 shows some standard tangle diagrams. Two rational tangles are of the
same type if and only if they have identical classifying vectors. Due to the requirement that
|a)|>1 in the classifying vector convention for rational tangles, the corresponding tangle

projection must have at least two nodes. There are four rational tangles {(0),(0,0),(1),(-1)}
that are exceptions to this convention {|2,/=0 or 1) and are displayed in Figure 7c-f. The
classifying vector (a,,4,,....a,) can be converted to an (extended) rational number
bia € Q' by means of the following continued fraction calculation:

bla = a +1/{(a,_  +(1/(a,,+ .



Two rational tangles are of the same type if and only if these (extended) rational numbers arc
equal (Conway, 1970), which is the reason for calling them “rational” tangles.

In order to use tangles as building blocks for knots and links, and mathematically to
mimic enzyme action on DNA, we now introduce the geometric operations of tangle addition
and tangle closure. Given tangles 4 and B, one can form the tangle A+ B as shown in Figure
8a. The sum of two rational tangles need not be rational. Given any tangle C, one can form
the closure M(C) as in Figure 8b. In the closure operation on a 2-string tangle, ends NW and
NE are connected, ends SW and SE are connected, and the defining ball is deleted, leaving a
knot or a link of two components. Deletion of the defining B® is analogous to deproteiniza-
tion of the DNA when the synaptosome dissociates. One can combine the operations of tangle
addition and tangle closure to create a tangle equation of the form N(4 + B) = knot (link). In
such a tangle equation, the tangles A and B are said to be summands of the resulting knot
{link). An example of this phenomenon is the tangle equation N((-3,0)+ (1)) =<2>, shown in
Figure 8c. In general, if 4 and B are any two rational tangles, then N(A+ B) is a 4-
plat. Given these constructions, rational tangles are summands for 4-plats.

THE TANGLE MODEL FOR SITE-SPECIFIC RECOMBINATION

The fundamental observations underlying this model are that a pair of sites bound by
an enzyme forms a tangle and that most of the products of recombination experiments
performed on unknotted substrate are 4-plats. We will use tangles to build a model that will
compute the topology of the pre- and post-recombination synaptic complex in a single
recombination event, given knowledge of the topology of the substrate and product (Ernst and
Sumners, 1990; Sumners, 1990, 1992; Sumners et al., 1994). In site-specific recombination on
circular DNA substrate, two kinds of geometric manipulation of the DNA occur. The first is a
global ambient isotopy, in which a pair of distant recombination sites are juxtaposed in space,
and the enzyme binds to the molecule(s), forming the synaptic complex. Once synapsis is
achieved, the next move is local and due entirely to enzyme action. Within the region
occupied by the enzyme, the substrate is broken at each site, and the ends are recombined. We
will model this local move.

The aim of our mathematical medel is, given the observed changes in geometry and
topology of the DNA, to compute the topology of the entire synaptic complex, both before
and after enzyme action. Within the region controlled by the enzyme, the enzyme breaks the
DNA at each site and recombines the ends by exchanging them. We model the enzyme itself
as a 3-ball. The synaptosome consisting of the enzyme and bound DNA forms a 2-string
tangle.

What follows is a list of biological and mathematical assumptions made in the tangle
model (Ernst and Sumners, 1990; Sumners, 1992; Sumners et al., 1994). Most of these
assumptions are implicit in the existing analyses of the results of enzyme experiments on
circular DNA (Cozzarelli et al., 1984; Stark et al., 1989; Spengler et al., 1985; Wasser-man
and Cozzarelli, 1986; Wasserman et al., 1985; Kanaar et al., 1990; White et al., 1987; Kanaar
etal., 1988; Abremski et al., 1986; Droge and Cozzarelli, 1986; Spengler et al., 1984).

We make the following biological assumption:
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Assumption 1 The enzyme mechanism in a single recombination event Is constant,
independent of the geometry (supercoiling) and topology fknotting and catenation) of the
substrate population. Moreover, recombination takes place entirely within the domain of the
enzyme ball, and the substrate configuration outside the enzyme ball remains fixed while the
strands are being broken and recombined inside and on the boundary of the enzyme.

That is, we assume that any two pre-recombination copies of the synaptosome are
identical, meaning that we can by rotation and translation superimpose one¢ copy on the other,
with the congruence so achieved respecting the structure of both the protein and the DNA.
We likewise assume that all of the copies of the post-recombination synaptosome are
identical.

In a recombination event, we can mathematically divide the DNA involved into three
types: (1) the DNA at and very near the sites where the DNA breakage and reunion are taking
place; (2) other DNA bound to the enzyme, which is unchanged during a recombination
event; and (3) the DNA in the synaptic complex that is not bound to the enzyme and that does
not change during recombination. We make the following mathematical assumption about
DNA types (1) and (2):

Assumption 2 The synaptosome is a 2-string tangle and can be mathematically
subdivided into the sum O, + P of two tangles.

One tangle, the parental tangle P, contains the recombination sites where strand
breakage and reunion take place. The other tangle, the outside bound tangle O,. is the
remaining DNA in the synaptosome outside the P tangle; this is the DNA that is bound to the
enzyme but that remains unchanged during recombination. The enzyme mechanism is
modeled as tangle replacement (surgery) in which the parental tangle P is removed from the
synaptosome and replaced by the recombinant tangle R. Therefore, our model assumes the
following:

pre-recombination synaptosome = O, + P

post-recombination synaptosome = O, + R,

In order to accommodate nontrivial topelogy in the DNA of type (3), we let the
outside free tangle O, denote the synaptic complex DNA that is free (not bound to the

enzyme) and that is unchanged during a single recombination event. We make the following
mathematical assumption:

Assumption 3 The entire synaptic complex is obtained from the tangle sum (O, +

synaptosome) by the tangle closure construction.
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If one deproteinizes the pre-recombination synaptic complex, one obtains the
substrate; deproteinization of the post-recombination synaptic complex yields the product.
The topological structure (knot and catenane types) of the substrate and product yields
equations in the recombination variables {0, .0,,P, R} . Specifically, a single recombination
event on a single circular substrate molecule produces two recombination equations in four
unknowns:

substrate equation: N(O, + 0, + P)=substrate

product equation:  N(O, +0, +R )= product..

The geometric meaning of these recombination equations is illustrated in Figure 3. In
Figure 3, O, =(0), O, =(-3,0), P=(0), and R=(1). With these values for the variables, our

recombination equations become:

substrate equation:  N((0)+(-3,0)+(0)) =<1>
product equation:  N((0)+(=3,0)+ (1)) =<2 >,

THE TOPOLOGY OF TN3 RESOLVASE

Tn3 resolvase is a site-specific recombinase that reacts with certain circular duplex
DNA substrate with directly repeated recombination sites (Wasserman et al., 1985). One
begins with supercoiled unknotted DNA substrate and treats it with resolvase. The principal
product of this reaction is known to be the DNA 4-plat <2 > (the Hopf link, Figures 4a and
5a) (Wasserman and Cozzarelli, 1985). Resolvase is known to act dispersively in this
situation—to bind to the circular DNA, to mediate a single recombination event, and then to
release the linked product. It is also known that resolvase and free (unbound) DNA links do
not react. However, once in 20 encounters, resolvase acts processively—additional recombi-
nant strand exchanges are promoted prior to the release of the product, with yvield decreasing
exponentially with increasing number of strand exchanges at a single binding encounter with
the enzyme. Two successive rounds of processive recombination produce the DNA 4-plat
«2,1,1> (the figure eight knot, Figures 4b and 5b); three successive rounds of processive
recombination produce the DNA 4-plat <11,1,1,1> (the Whitehead link, Figures 4¢ and Sc),
whose electron micrograph appears in Figure 1b: four successive rounds of recombination
produce the DNA 4-plat <12,1.11> (the knot 6, Figures 4d and 5d), whose clectron
micrograph appears in Figure lc. The discovery of the DNA knot < 12,111 > substantiated a
model for Tn3 resolvase mechanism (Wasserman et al., 1985).

In processive recombination, it is the synaptosome itself that repeatedly changes
structure. We make the following biologically reasonable mathematical assumption in our
model:
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Assumption 4 [n processive recombination, each additional round of recombination
adds a copy of the recombinant tangle R 1o the synaptosome.

More precisely, n rounds of processive recombination at a single binding encounter
generate the following system of (n+ 1) tangle equations in the unknowns {0,,0,, P, R} :

substrate:  N(Q, + O, + P)= substrate
rthround:  N(O, + O, +rR )= rth round product, I <r<n.

For resolvase, the electron micrograph of the synaptic complex in Figure 2 reveals that
0, =(0), since the DNA loops on the exterior of the synaptosome can be untwisted and are

not entangled. This observation from the micrograph reduces the number of variables in the
tangle model by one, leaving us with three variables {0,,P,R}. One can prove (Sumners,

1990, 1992; Emst and Sumners, 1990) that there are four possible tangle pairs {O,, R } . which

can produce the experimental results of the first two rounds of processive Tn3 recombination.
The third round of processive recombination is then used to discard three of these four pairs
as extraneous solutions. The following theorems can be viewed as a mathematical proof of
resolvase synaptic complex structure: the model proposed in (Wasserman et al., 1985) is the
unique explanation for the first three observed products of processive Tn3 recombination,
assuming that processive recombination acts by adding on copies of the recombinant tangle R.

The process of obtaining electron micrographs of RecA-enhanced DNA knots and
catenanes is technically difficult and requires a relatively large amount of product due to the
extensive work-up required for RecA coating and microscopy. Gel electrophoresis is not only
technically much easier to do, but it detects vanishingly small amounts of DNA product. For
these reasons, biologists prefer to use gel electrophoresis as the assay from which experimen-
tal conclusions are to be drawn. For relaxed DNA knots and links, the gel determines the
crossing number of the (relaxed) products, and comparison to gel ladders for known knot and
catenane structures can be used to obtain more information than crossing number alone. As an
aid to the analysis of topological enzymology experiments, a table of possible (and biologi-
cally reasonable!} tangle mechanisms has been prepared (Sumners et al., 1994) for each
possible sequence of crossing numbers of reaction products that can be read from the gel.
This tangle table should make the mathematical analysis of topological enzymology
experiments easier to do.

We now come to the rigorous mathematical proof of Tn3 mechanism. The proofs of
the following two theorems can be skipped without detriment to the continuity of the
exposition.

Theorem 1 Suppose that tangles O, , P, and R satisfy the following equations:

(i) N(O, + Py=<1> (the unknot)



(i) N(O, + R)=<2> (the Hopflink}
(iii) N(O, + R+ RY=<2)1> (the figure 8 knor).
Then {0,,R} = {(=3,0),(D)}, {3,0).(=D}, {(=2,-3,= DD}, or {(2,3,1).(-D)}.

Proof: In this proof we use the following notation: R" denotes Euclidean n-space, B"
denotes the unit ball in R" (the set of all vectors in R™ of length <1), and $™"' denotes the
boundary of B" (the set of all vectors in R" of length 1). The first (and mathematically most
interesting) step in the proof of this theorem is to argue that solutions {0, R} must be rational
tangles. Now O,, R, and (0, + R) are locally unknotted, because N(O, + R) is the Hopf link,
which has two unknotted components. Any local knot in a tangle summand would persist in
the Hopf link. Likewise, P is locally unknotted, because N(O,+ P) is the unknot. Let 4’
denote the 2-fold branched cyclic cover of the tangle A; then 84'=S' xS'. If 4 is a prime
tangle, then the inclusion homeomorphism injects m,(34") =Z®7Z into n,(4") (Lickorish.
1981). If both 4 and B are prime tangles, and N(4 +B) denotes the 2-fold branched cyclic
cover, then m,(N(A+ B)) contains a subgroup isomorphic to Z®Z. If K is any 4-plat, then
,(K") is a cyclic group, since K' is a lens space (Burde and Zieschang, 1985). Since no
cyclic group contains Z@® Z , no 4-plat has two prime tangle summands. This means that if A
and B are locally unknotted tangles, and N(4+ B) is a 4-plat, then at least one of A and B
must be a rational tangle. From equation (ii) above, we conclude that at least one of {0,,R} is
rational. Suppose that O, is rational and that R is prime. Given that N((O, + R)+ R) is a knot,
one can argue (Lickorish, 1981) that O, + R is also a prime tangle. From equation (iii), we
then have that the 4-plat <2,11> admits two prime tangle summands, which is impossible.
We therefore conclude that R must be a rational tangle.

The next step is to argue that O, is a rational tangle. Suppose that O, is a prime
tangle. Then P must be a rational tangle, because N(O, +P) is the unknot (equation (i)).
Passing to 2-fold branched cyclic covers, we have that N(0, + Py’ =8, and P’ is homeomor-
phic to §' x B (since P is rational), so O is a bounded knot complement in §°. We know
that R is a rational tangle and can argue that equation (iii) implies that (R + R) is likewisc
rational. Again passing to the 2-fold branched cyclic covers of equations (ii) and (iii), we
obtain the equations N(O, + R)' = the lens space L(2,1) and N(O, +(R+ R))’' = the lens space
L(5,3). Since R* and (R+R)' are each homeomorphic to a solid torus §' x B, this means
that there are two attachments of a solid torus to O along @ O; =8’ x8', yielding the lens
spaces L(2.1) and L(5,3). The process of adding on a solid torus along its boundary is called
Dehn surgery, and the Cyclic Surgery Theorem (Culler et al., 1987) now applies to this
situation to imply that, since the orders of the cyclic fundamental groups of the lens spaces
differ by more than one, the only way this can happen is for O; to be a Seifert fiber space and
hence a torus knot complement. Fortunately, the results of Dehn surgery on torus knot
complements are well understood, and one can argue that in fact O] must be a complement of

the unknot (a solid torus) (Ernst and Sumners, 1990), which means that O, is a rational
tangle.
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The proof now amounts 1o computing the rational solutions to equations (ii) and (iii),
exploiting the classifying schemes for rational tangles and 4-plats. In Ernst and Sumners
(1990), a “calculus for rational tangles™ was developed to perform such calculations. One can
use this calculus of classifying vectors to solve equations (ii) and (iii), obtaining the four
solution pairs {0, R} ={(-3,00,(1}}, {(3,00,(-1}, {(-2,-3-D,(D}, and {(2.3,1.(-1)}.
Because each of the unoriented 4-plat products in equations (ii) and (iti) is achiral, given any
solution set {0,,R} to equations (ii) and (i1}, its mirror image {-O,,-R} must also be a
solution. So the mathematical situation, given equations (i) through (iii), is that we have two
pairs of mirror image solution sets for {0, R} .

In order to decide which is the biologically correct solution, we must utilize more
experimental evidence. The third round of processive resolvase recombination determines
which of these four solutions is the correct one.

Theorem 2 Suppose that tangles O,, P, and R satisfy the jollowing equations:

(i) N(O, + P)=<1> (the unknot)

(i1) N(O, + R)=<2> (the Hopf link)

(iii) N(O, + R+ Ry=<2,1> (the figure 8 knot).
(iv) N(O, + R+ R+ Ry=<\LLL11 > (the (+) Whitehead link).
Then O, =-3,0, R=(1), and N(O, + R+ R+ R+ R)=< 12,111 >.

Proof: The unoriented (+) Whitehead link is chiral and {0,R}={(-3.0),()} is the
unique solution to equations (i) and (iv).
The correct global topology of the first round of processive Tn3 recombination on the

unknot is shown in Figure 3. Moreover, the first three rounds of processive Tn3 recombina-
tion uniquely determine N(O, + R+ R+ R+ R), the result of four rounds of recombination. It

is the 4-plat knot <1,2,1,1,1>, and this DNA knot has been observed (Figure 1¢). We note that
there is no information in either Theorem 1 or Theorem 2 about the parental tangle P. Since P

appears in only one tangle equation (equation (1)), for each fixed rational tangle solution for
0,, there are infinitely many rational tangle solutions to equation (i) for P (Ernst and

Sumners, 1990). Most biologists believe that P =(0), and a bicmathematical argument exists
for this claim (Sumners et al., 1994).



SOME UNSOLVED PROBLEMS

1. How does TOPQ II recognize knots? E. coli contains circular duplex DNA
molecules. In wild-type E. coli, no knotting has been observed for these molecules. However,
in a mutant strain of £. coli where the production of Topoisomerase 11 (the enzyme that
performs strand passage via an enzyme-bridged transient double-stranded break in the DNA)
can be blocked by heat shock, a small fraction (about 7 percent) of knotted DNA has been
observed (Shishido et al., 1987). All observed knots have the gel mobility of trefoil knots. The
observed knots arc presumably the by-products of other cellular processes (such as recombi-
nation). This experiment shows that TOPO I is able to detect DNA knots and kill them in
wild-type E£. coli. How does the cnzyme (which can act only locally) detect the global
topology of a DNA knot and then make just the right combination of passages to kill the
knot? It must be the energy minimization of the DNA itself that detects the knotting. The
enzyme has only to detect when two DNA strands are being pushed together in space by the
DNA itself in an cffort to attain a lower energy state, whence the enzyme can operatce,
allowing one DNA strand to pass through another to reach a lower-energy configuration. If
one ties a knot in a short stiff rubber tube (an elastic tube) and seals up the ends to form a
knotted circle, the tube will touch itself, trying to pass through itself to relieve strain and
minimize energy. For circular elastica in R, minimization of the bending energy functional
occurs when the elasticum is the round planar unknot (Langer and Singer, 1984, 1985). This
means that a knotted elasticum has at least one point of self-contact and that the elasticum is
pushing at that point of self-contact to get through to a lower energy state. Does this elasticum
model adequately explain the ability of Topoisomerase 1l to detect and selectively kill DNA
knots in vivo?

2. What is the topology of the kDNA nerwork? The kinetoplast DNA (kDNA) of the
parasite trypanosome forms a link of some 5,000 to 10,000 unknotted DNA circles—the DNA
equivalent of chain mail (Marini et al., 1980; Englund et al., 1982; Rauch et al., 1994). Work
is ongoing (Rauch et al., 1994) in which the topological structure of kDNA is being studied
by means of partial digest of the network, electrophoresis, and electron microscopy of the
characteristic fragments, in which the large kDNA link is being randomly broken up into
small sublinks, and the frequency of occurrence of these sublink units is being used
(statistically) to reconstruct the large link itself. The kDNA network consists of small
minicircles and a few large maxicircles. The minicircles are known to be unknotted, and it is
known that neighbors link in the fashion of the Hopf link (Figure 4a) (like the links in a
chain). Moreover, it is believed that the kDNA network has a fundamental region that is
repeated in space to generate the entire structure. This gives rise to a knot theory problem:
classify the links that allow a diagram in which each component has no self-crossings (and
hence is unknotted) and in which cach component links another component simply (like the
links in a chain) or not at all, and in which the linking structure is periodic in space. The
spatial periodicity amounts to drawing the link diagram on a torus (or some other compact,
orientable 2-manifold), from whence the entire diagram is reproduced by taking the universal
cover. The algebraic classification of such “chain mail links™ should be interesting and
obtainable with off-the-shelf topological invariants. Another topological problem has arisen
in this biological system. A trefoil knotted minicircle has been observed as an intermediate to
the replication process on the KDNA network (Ryan et al., 1988). What is the mechanism that



— Y

produces this knotted minicircle? Does the topology of the network naturally generate knots
as replication intermediates?

3. Why is the figure eight knot faster than the trefoil knot? The phenomenon of gel
mobility of relaxed knotted duplex DNA circles (Dean et al., 1985) has no adequate
theoretical explanation. The gel velocity of relaxed DNA knots is determined by crossing
number: the larger the crossing number, the faster the migration. Perhaps this is because
among knots of the same length with small crossing numbers, the average value of the radius
of gyration (a measure of the average size) correlates strongly with crossing number. It is very
curious that the crossing number, clearly an artifact of planar diagrammatic representation of
knots, would have anything at all to do with the three-dimensional average knot confor-
mation. What is the relationship (if any) between radius of gyration of DNA circles of fixed
molecular weight and fixed knot type, crossing number, and the gel mobility of these knotted
DNA circles?



73 B

ANNOTATED BIBLIOGRAPHY

Knot Theory

Adams, C., 1994, The Knot Book: An Elementary Introduction to Mathematical Theory of Knots, New
York: W.H. Freeman.

Kauffman, L.H., 1987, On Knots, Princeton, N_1.: Princeton University Press.

Livingston, C., 1994, Knot Theory, Carus Mathematical Monograph, Vol. 24, Washington, D.C.:
Mathematical Association of America,

Rolfsen, D., 1990, Knots and Links, Berkeley, Calif.: Publish or Perish. Inc.

Each of these mathematics books has an easygoing, reader-friendly style and numerous
pictures, a very important commodity when one is trying to understand knot thcory.

Application of Geometry and Topology to Biology

Bauer, W.R., F.H.C. Crick, and J.H. White, 1980, “Supercoiled DNA,” Scientific American 243,
100-113.

This paper is a very nice introduction to the description and measurement of DNA supercoil-
ing.

Sumners, D.W., 1987, “The role of knot theory in DNA research,” pp. 297-318 in Geomeny and
Topology, C. McCrory and T. Shifrin (eds.), New York: Marcel Dekker.

Sumners, D.W., 1990, “Untangling DNA,” The Mathematical Intelligencer 12, 71-80.

These papers are expository articles written for a mathematical audience. The first gives an
overview of knot theory and DNA, and the second describes the tangle model.

Sumners, D.W. (ed.), 1994, New Scientific Applications of Geometry and Topology, Proceedings of
S) ia in Applied Math ics, Vol. 45, Providence, R.I.: American Mathematical Society.

This volume contains six expository papers outlining new applications of geometry and
topology in molecular biology, chemistry, polymers, and physics. Three of the papers concern DNA
applications.

Walba, D.M., 1985, “Topological stereochemistry,” Tetrahedron 41, 3161-3212.

This paper is written by a chemist and describes topological ideas in synthetic chemistry and
molecular biology. It is a good place to witness the translation of technical terms of science to
mathematical concepts, and vice versa,

Wang, J.C., 1982, “DNA topoisomerases,” Scientific American 247, 94-109.

This paper describes how topoisomerases act to control DNA geometry and topology in
various life processes in the cell.
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Wasserman, S.A., and N.R. Cozzarelli, 1986, “Biochemical topology: Applications to DNA
recombination and replication,” Science 232, 951-960.

This paper describes the topological approach to enzymology protocol and reviews the results
of various experiments on topoisomerases and recombinases.

White, I.H., 1989, “An introduction to the geometry and topology of DNA structure,” pp. 225-253 in
Mathematical Methods for DNA Sequences, M.S. Waterman (ed.), Boca Raton, Fla.: CRC Press.

This is a very nice introductory mathematical treatment of linking number, twist, and writhe,
with DNA applications.
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