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Abstract

We give in this paper an algorithm T based on a general graph theoretical procedure
for solving systems of linear equations (see [18]).

T allows the eigenvalues and eigenspaces of any tree to be simultaneously calculated.
Some mnice results for caterpillars and cospectral trees are described.

1 Introduction

1.1 Definitions and notation

Let G be a finite graph (without loops and multiple edges) with non-empty vertex
set V = V(@) and edge set E = E(G) which has n = n(G) (= [V(G)|) vertices; let
A = A(G) denote the 0 — 1 adjacency matrix of G and let I be the n x n identity
matrix. The polynomial det(AI— A) in A and its roots are called the characteristic
polynomial of G, denoted by Pg(A), and the eigenvalues of G, respectively. Let
A° be an eigenvalue of G and let 0 denote the zero vector on n components. The set
X = X()°) of all solutions x of the equation

(A —A)-%=1

forms the eigenspace of G belonging to A° and every non-zero x° € X° (with |x°| = 1)
is a (normalized) eigenvector of (' belonging to A°. (In Hiicke] theory, these vectors
are called “molecular orbitals” by chemists.)

A tree T is a connected graph that has no cycle.

A forest F' is a graph whose components are trees.

The number of edges of a Graph G which are incident with a vertex v of (7 is called
the valency of v, denoted by val(v. ).
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Vertex v € V(T') is called an isolated vertex, pendent vertex or branching
vertex of T' if and only if val(v,T) = 0, val(v,T) = 1 or val(v,T) > 3, respectively
(Figure 1).

o — 9o o pendent vertex
T .
—eo—o branching vertex
o —o —o
o —o —o
P
w S

Figure 1

A whirl W is a tree with at most one branching vertex. A star S is a whirl with
exactly one branching vertex v* and no vertices of valency 2. A path P is a whirl
without branching vertex (Figure 1).

The trivial graph is the graph with only one vertex (and no edges).

1.2 Chemical connection and literature

The interesting eigenvalue-eigenvector problem of a tree has attracted the attention
of many theoretical chemists over a long period of time. First results for simple
polyenes (paths with even numbers of vertices, sce Fig. 2) are given by E. Hiickel [1],
W.G. Penney [2], J.E. Lennard-Jones (3], C.A. Coulson [4], G.W. Wheland (5] and
R.S. Mulliken and C.A. Rieke [6]. H.H. Giinthard and H. Primas [7] and U. Wild,
J. Keller and H.H. Giinthard (8] showed that the eigenvalue-eigenvector problem is
of interest in Hiickels theory [1]. Much information about the early approaches to
Hiickel theory of organic compounds are contained in the classical books of C.A.
Coulson and A. Streitwieser, Jr. [9], and C.A. Coulson, B.O. Leary and R.B. Mallion
[10]. For more details concerning eigenvalues and eigenvectors of a graph see the
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mathematical monographs of D.M. Cvetkovi¢, M. Doob and H. Sachs [11], and D.M.
Cvetkovié, M. Doob, I. Gutman and A. Torgasev [12].

For trees T', recursive formulas for calculating Pr(\) were developed by E. Heilbron-
ner [13] and F. Harary, C. King, A. Mowshowitz and R.C. Read [14]. A table of all
eigenvalues for all trees with no more than 10 vertices is contained in [11].

For paths and stars there are explicit formulas for Pr(A), T € {P,S}. [3, 9, 15, 16]
for all eigenvalues (3, 9, 16, ?] and for all eigenvectors [3, 9, 16].

In this paper an algorithm T based on a general graphentheoretical proce-
dure for solving systems of linear equations, see [18], is developed. T allows
the eigenvalues and eigenspaces of any tree to be simultaneously calculated.

H H H

H\T/C\H H\T/C\C/C\H

H H H
ethene butadiene - (1,3)
H H }li
H\T/JJ\C/‘L\T/C\H
H 1!1 H

hexatriene - (1,3,5) Figure 2

2 Path systems of a tree

Let T be a tree.
If n =1 then T is called a trivial tree (or trivial path).

fn>1,put Vi = W(T) = {v|ve V(T) and val(v,T) = 1}, V; = W(T) := {v |
v e V(T) and val(v,T) > 3} and ny = ny(T) :=| Vi |,m = ne(T") :=| Vi |. Clearly,
ny( P) = 0 for every path P.

The following fact is well known and easy provable (see [19]).

Observation 1:
Let u and v be distinct vertices of a tree T'. Then there exists in T exactly one path
P(u,v) with end vertices u,v (immediate). u]



- 220 -

A path system (PS) of T is a set of pairwise (vertex) disjoint paths of 1" (trivial
paths being admitted).

A complete path system (CPS) P = P(T') of 7' is a PS which covers all vertices
of T (Figure 3).

P
UV Ee————>» )

v =0; WP,

T(P)
[ — =
P3 P4
Ee—» @ 0 =7;

P ={P, P, Py, Ps} Figure 3

Let I1 = II(T') denote the set of all CPSs of T'. For P € I, put p = p(P) :=| P |.

Observation 2:
Ior every tree T' and every P € II,

[%ﬂs;@n,

where [x] is the least integer not less than .
The proof is simple. o

The elements of P are denoted by Py = P(vg, Tk), k = 1,2, ..., p (Figure 3).

3 The algorithm

Let T be a tree and P € II. Let T(P) be a drawing of 7" in which the edges of P are
fat (Figure 3).

For k = 1,2,...,p, direct all edges of P = P(vg, ;) towards vertex Tx. Thus T(P)
is turned into a partially directed tree e ?(P) (with directed paths T’Z) (Figure
4).
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The points vx are called the sources of ? Every oriented path P of ? is pro-
longed beyond its point Tx by one directed edge & connectmg 7, with an additional

,virtual® vertex vy, thus T isturned intow figure ? —7‘? (P) (Figure 4).

The points v} are called the sinks of ? For any vertex v of ? which is not a
source let v+ be its unique predecessor and let N*(v) := N(v*) — {v} be the set of
neighbours of v* which are different from v (Figure 5).

Algorithm T

To every vertex v of T assign a vector d(v,A) = (di(v,A),da(v, A),....dy(v, X))

accordings to the following rules.

(T.1) For a source vy put d(vg, A) = (81k, O2k, .., 6pk), wWhere 8; = 1 and d = 0 for
£k (,k=1,2,..p)

(T.2) for any vertex v of ? which is not a source, put
d{v,A) = A - d(vt,A) ~ z d(v’, A).

VEN+(v)

*
It is easy to see that, running through ? from the sources to the sinks, we have
no difficulty in successively calculating the vectors d(v, A) which are thus uniquely

determined by (T.1) and (T.2). Label the vertices of T which are distinct from the
sources and sinks in any order as vp41, Upt2, ..., Uu. Form the n x p matrix

(T(P), A) = (dT (01, ), d T (w2, )y oory d T (0, AT = (i3 1))
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and die p x p matrix
DY(T(P),A) = (AT (v, 1), a7 (03, 4), . T (02, AT = (o], )

(k=125 .40).

Figure 5

Theorem 1:

Pr(A) = detD”(T(P), A).

Theorem 2:

Let A° be an eigenvalue of T, let y° be a non-trivial solution of
(*) D(T(P),A%) -y°=0

and put

(**) x° = D(T(P, X°) - y°.

Then the vector x° is an eigenvector of T belonging to A°, and all eigenvectors be-
longing to A® can be obtained this way.

Both theorems follow from theorems in [18]. o

Example 1:

For the tree T' in Figure 1 (see Figure 6 with labelled vertices) we obtain the following
matrices:
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1000 X A—-10 0 0 0
01000 -1 0 0 -1 =
D))= 00100 0 A OAT—1 A—2x M3+
00010 0 1] 0 0 -1
and
A —=2) - 0 0 T
i —A A =241 1
D (R M = 0 =AZT41 AP —d4A%43X =342
1] 0 ) A
Thus

Pr(A) = € detD*(T(P),A) = A™ — X% 4+ 2505 — 230* + 452,

A% =0 is a double root of Pr(A), ¥? =1(1,0,0,0), ¥y =(0,0,0,1) are linearly inde-
pendent solutions to (*) and the vectors xJ, x3 corresponding to yJ, y3 by (**) are
eigenvectors of T' belonging to A% their components z%,, z}

. are given in Figure 7,
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close to vertex v;.

1 0 1 (0) 0 0 0 (0)
-0 — -9 0—1r——0———o
U o_Q
0 0 0 0
- -—9| ——eo—9(
— - —e— —-9 ow--o—J»—-—-o--—u
(0) 0 0 0 (0) (0) -1 0 1 (0)
Figure 7

The zeros in the brackets only serve for checking the correctness of the calculation.
For the application of the algorithm to be developed, it is very desirable to have a
CPS with minimal number of paths.

4 Whirls and minimal complete path systems

Let T be a tree and P € II. A minimal complete path system (MCPS) P of T
is a CPS with a minimal number of paths p =| P |= min{| P | | P € I1}. We need
some further notations.

A CPS of a forest F is the disjoint union of the CPSs of all components of F.

A whirl system (WS) of T is a set of pairwise (vertex) disjoint whirls of T' {also
trivial whirls are allowed).

A complete whirl system (CWS) W = W(T') of T is a WS which covers all ver-
tices of T (Figure 8).

Let § = §2(T') denote the set of all CWSs of T. For W € @ let w = w(W) =| W |
denote the number of whirls in W.
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Observation 3:
For every (branched) tree T and every W € Q(T),

[nb+2

3 ]Swgn.

Proof:

Let E and E denote the edge set of T and of W, respectively. Every W € W has at
most one branching vertex and every edge from the difference set E — E is incident
with at most two branching vertices of T' which are not branching vertices of the
whirls of W. Therefore

m<w+2|E-E|l=w+2(w-1)=3w-2. o

Next we give a sketch of an algorithm finding a MCPS of a (branched) tree T.
First we construct a sequence W = (W' W2 ... WW) of whirls W' C T, forming a
CWS in the following way.

If T itself is a whirl then set W = {W?'}. Otherwise find a branching vertex v, and
an edge €; = (u1,v1) in T such that after removing ¢; tree T decomposes into a whirl
W! containing v! and a subtree T of T containing u; (Figure 9).
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One can easily check that such an edge ¢; exists. If T is not a whirl then repeat
this procedure in order to get an edge e; = (uy, v2) of T such that T' — e; consists
of a whirl W? (containing v2) and a tree T? {containing u;). Continue until a tree
T~ is found which is itself a whirl: 7%~ = W*. A sequence (W', W?, ..., W") of
a tree T constructed this way will be called an outer whirl sequence (OWS) of T
denoted by OWS(T").

Let n‘; = n,(W") be the number of pendent vertices of W*, i = 1,2,...,w. For every
whirl W there is a CPS P! = { P}, P}, ..., P;} with exactly P* = nj —1 paths (Figure
9); such a system can be found by the following procedure. Connect two arbitrary
pendent vertices of Wi by the path Pi. Removing the edges and vertices of pi from
W results in a graph consisting of paths Pj, P, ..., P,‘;,l_]. It is easy to see that p
is an MCPS for W¢. The path system P = P! UP?U...UP¥ isa CPS of T and it
consists of exactly n] + n? + ... + n¥ — w paths. P is, in fact, a MCPS; this follows
from the next theorem.

Theorem 3:
Any CPS of T has no less than nj + n? + ... + ¥ — w paths.

Proof by induction on the number w of whirls. If w = 1, the statement is evidently
true. Now assume that it is true for all trees having an outer whirl sequence with no
more than w whirls and let 7" be a tree with OWS(T) = (W', W?, ..., W**). The
tree T* has the OWS(W?2, W3 ., W¥t!). Let P be a CPS of T. The deletion of all
edges and vertices of W! and of ¢, from the paths of P results in a CPS P’ of T*,
and removing all edges and vertices of T'. Except u; from the paths of P we obtain
a CPS P of the whirl W!Ue, (Figure 10). Exactly one path of P has vertices both
in P* and P’ that is the path containing u,.
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Therefore we get

|P|=|P"|+|P| -1

By induction assumption

| P[>0+ nd+..+ 2P —wand

| P* |> nj.

Combeing these equations and inequalities we obtain

[P > nl+nd+ . +aft —(w+1)

proving the assertion. u}

Remark: The problem of minimizing the number of paths in a CPS of a tree is
equivalent to the problem of maximizing a set in an intersection of two matroids (see
20}).

This problem having a good solution algorithm (i.e., being solvable in polynomial

time), it is conceivable that there are also other simple algorithms for finding a
MCPS.
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Example 2:
For the tree T in Figure 1 (see Figure 11 with labelled vertices) we obtain the fol-
lowing matrices:

100 A NM-10 Mo30241 —X42% AS—4®430\ 1
DIT@E,N=[0100 -1 0 —x41 by —342)
0010 0 A - At—1 -\
and
“A M -BM4EN—1 42\ T
D(TE), N =] A —M+3-1 A
0 AL X — 21

Thus Pr(A) = ¢« detD*(T(P),\) and for the double root A® = 0 of Pr(}), y? =
(1,0,0), ¥3 = (1,-1,0) are linearly independent solutions to (*) and the vectors
x{,x9 corresponding to y9,y3 by (**) are eigenvectors of T belonging to A% their
components are given in Figure 7.
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5 Another algorithm to calculate Pp(A)

Let T be a tree with at least 3 vertices and v” € V(T). Let val,(v",T) =

| N(v”,T) N Vi(T) | denote the number of pendent vertices of T' which are adjacent
to vertex v”. Assign to every vertex v of T the weight w(v) = w(v,T) := valy(v,T)
and delete all pendent vertices of 7. Thus T' is turned into a weighted tree which
we denote by H = H(T). H is called the reduced tree of T (Figure 12). Find an

MCPS P(H) of H with ¢ paths and construct H(P), ﬁ, ﬁ‘ (Figure 12) as described
above for T.

— 9o o (2)

. (0)
o--—-—vw-—«L (1) (0)
R W 2)

T H=H(T)

Figure 12
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Algorithm H

To every vertex v of ﬁ! assign a vector f(v,A) = (fi(v,A), fa(v, A), ...y folw, A)) by
use of the following rules

(H.1) For a source v put
f(vh )‘) = (6”“ 62k1"'36qk)1
where §; =1 and &y =0for ¢ # k (i,k=1,2,...,9);

(H.2) for any vertex v of ﬁ which is not a source, put

fv,A) = (A —wlet)-pw)-flor, )= T (v, A),
VEN+(v)
where p = 1/A.

It is easy to see that the vectors for the sink vertices are uniquely determined by
(H.1) and (H.2). Form the ¢ x ¢ matrix

Fr(HP),\) = (T (01, 2), 705, 2), -, ST (05, )T = (o7, )

ik = 1;2054)-

Theorem 4:
Pr(}) = A" . detF*(H(P), ), and n, = ny(7T).

Note that this theorem is a modification of a theorem in [18]. o

The polynomial
fr(X) := detF*(H(P), A) is called reduced characteristic polynomial of 7.

Note that this algorithm is also applicable for calculating the eigenvectors of T which
belong to an eigenvalue A # 0 using the procedure described above in slightly modi-
fied form.

Example 3:
The simple calculation of Pr(A) is given in Figure 13.
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(

Fr(d) = X% — 9A% £ 25X — 232" 44773
and

Pr(X) = M fr(X)

Figure 13

6 Caterpillars

Let C, := C(n,a) be a caterpillar tree such that the reduced tree H, := H(C,) is
a weighted path with n vertices and every vertex has weight a (a = 1,2,...) (Figure
14).
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Note that C;, has N = n(a + 1) vertices. In this case,
Pe,(A) = A fc.(A), where fg,(A) satisfies the recursion
(@) feulA)=(A=12)- fe,._,(A) = fea_.(X) (by use of algorithm H).

Thus (®) - in connection with the initial expressions fo,(A) := 1, fe,(A)=A—-%
- enables fo, () and Pg,(A) to be easily calculated. The result is the formula

fe.(N) = i(—l)‘kn(i))\"'zf

where k(i) is the number of matchings with exactly ¢ edges in C, (see [17]). It is
easy to prove (by induction) the validity of the following equations

1, if n=0
% if n=i>0
@k y(i—1)+kpoli— 1) +kay(d), if n>2
and i=1,2,..,n—1,

kn(i) = a® - o — 1) o1 @™ k(i) = @ - en(n — i)

k(i) =

and
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i) = T ealis 51,
1=0
where a,(1,7) = (".Tj) . C)

Therefore, the explicit formula for the characteristic polynomial of €, is

o) = S (1 T) (o) -
j=0

1=0

CE () (e

The eigenvalues for C, are described in the following observation.

Observation 4:

C, has the eigenvalue 0 with multiplicity N —2n = (a — 1)n (because of (@®)). The
remaining 2n eigenvalues can easily be obtained from (@) by using the trigonometric
transformation A — § = 2cosp : A= CGS:—:[ + \ICOSZ:—L +a (k=12,..,n).

If A is a root of P, (A), then | Ap |[< 1 + /a + 1 and

Jim maz{| A || P, (M) = 0}=14++a+1.

Note that the a,(z,7) play also a role in the theory of dimer coverings of square
lattices, see [21, 22], see also [23].

7 Cospectral trees
Two nonisomorphic graphs G', G* are called cospectral if Pg:(A) = Pgn(A).

In 1957 L. Collatz and U. Sinogowitz [24] showed that the two trees 7" = T"(a,b)
and 7" = T"(c, d) given in Figure 15 are cospectral if (a,b,¢,d) = (3,3,4,1).

T' =T'(a,b) T = T"(c,d)

Figure 15
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Define

(k) = (k+3,2k+3,2k+4,k+1),

ma(u) = (WP tu+ Lut+u+tl,(uit1)?u?),

ma(u,k) = (W +(k+ Du+ Lu2+ (k+ D(u+ 1)@ + (k4 2)u+ k + 1,u® + ku)

where k and u are integers. Note that 71(0) = 75(1) = 73(1,0) = (3,3,4,1). Trees 17"
and T" are cospectral if (a,b,¢,d) = 71(k), k£ > 0, and if (a,b,¢,d) = ma(u), u > 1;
this was shown by Mowshowitz [15] (1972) and by Schwenk [25] (1973), respectively.
Using algorithm H we find that 7" and T" are also cospectral if and only if (a, b, ¢, d) =
ra(u, k), k>0, u > 1.

8 Concluding remark

Note that Algorithm T can be applied in modified form (see, e.g., [26]) also for edge
and vertex weighted trees.

This paper has been supported by Deutsche Forschungsgemeinschaft (Jo-231/1-2).

References

[1] Hiickel, E.: Quantentheoretische Beitrage zum Benzolproblem. Z. Phys. 70
(1931), 204-286.

{2] Penney, W.G.: The electronic structure of some polyenes and aromatic molecules
11T Bonds of fractional order by the pair method. Proc. Roy. Soc. (London) A
158 (1937), 306-324.

[3] Lennard-Jones, J.E.: The electronic structure of some polyenes and aromatic
molecules I. Proc. Roy. Soc. A 158 (1937), 280-296.

[4] Coulson, C.A.: The electronic structure of some polyenes and aromatic
molecules VII Bonds of fractional order by the molecular orbital method. Proc.
Roy. Soc. (London) A 169 (1939}, 413-428.

[5] Wheland, G.W.: The resonance energies of unsaturated and aromatic molecules.
J. Am. Chem. Soc. 63 (1941), 2025-2027.

(6] Mulliken, R.S. and C.A. Rieke: Improved computations on conjugation and
hyperconjugation. J. Am. Chem. Soc. 63 (1941), 1770-1771.

[7] Giinthard, H.H. and H. Primas: Zusammenhang von Graphentheorie und MO-
Theorie von Molekeln mit Systemen konjugierter Bedingungen. Helv. Chim.
Acta 39 (1956), 1645-1653.



~ 236 -

[8] Wild, U., J. Keller and H.H. Giinthard: Symmetry properties of the Hiickel
matrix. Theoret. Chim. Acta 14 (1969), 383-395.

[9] Coulson, C.A. and A. Streitwieser: Dictionary of 7-Electron Calculations. Perg-
amon Press. Inc., San Francisco, 1965.

[10] Coulson, C.A., B. O’'Leary and R.B. Mallion: Hiickel Theory for Organic
Chemists. Academic Press, London, 1978.

[11] Cvetkovié¢, D.M., M. Doob and H. Sachs: Spectra of Graphs - Theory and
Application. VEB Deutscher Verlag der Wissenschaften, Berlin, 1982.

[12] Cvetkovi¢, D.M., M. Doob, I. Gutman and A. Torgasev: Recent Results in
the Theory of Graph Spectra, Annals of Discrete Mathematics, N° 36, North-
Holland, Amsterdam-New York-Oxford-Tokyo, 1988,

[13] Heilbronner, E.: Das Kompositions-Prinzip: Eine anschauliche Methode zur
elektronen-theoretischen Behandlung nicht oder niedrig symmetrischer Molekeln
im Rahmen der MO-Theorie. Helv. Chim. Acta 36 (1953), 170-188.

[14] Harary, F., C. King, A. Mowshowitz and R.C. Read: Cospectral graph and
digraphs. Bull. London Math. Soc.3 (1971), 321-328.

[15] Mowshowitz, A.: Graphs, groups and matrices. J. Comb. Theory, 12 (B) (1972),
177-193.

(16] Lovasz, L.: Combinatorial Problems and Exercises. Akademia Kiadé, Budapest,
1979.

[17] Lovasz, L. and J. Pelikdn: On the eigenvalues of trees. Periodica Math. Hung.
3 (1-2) (1973), 175-182.

(18] Al-Khnaifes, Kh. and H. Sachs: Graphs, linear equations, determinants, and the
number of perfect matchings. In: Contemporary Methods in Graph Theory. (R.
Bodendiek, Ed.), B.I. Wissenschaftsverlag Mannheim-Wien-Ziirich, 1990, 47-71.

[19] Sachs, H.: Einfiihrung in die Theorie der endlichen Graphen. I, Teubner, Leipzig,
1970.

[20] Recski, A.: Matroid Theory and its Applications. Akademiai Kiadé, Budapest,
1989.

[21] Sachs, H. and H. Zernitz, Discr. Math., in press.

[22] John, P.: Note on a modified Pascal triangle connected with the dimer problem.
J. Mol. Struct. (Theochem), 277 (1992), 329-332.



- 237 -

[23] Stanton, R.G. and D).D. Cowan: Note on a ,,square” functional equation. SIAM
Rev. 12 (1970), 277-279.

[24] Collatz, L. and V. Sinogowitz: Spektren endlicher Graphen. Abh. Math. Sem.
Univ. Hamburg 21 (1957), 63-77.

[25] Schwenk, A.J., in: New Directions in the Theory of Graphs. (F. Harary, Ed.)
Acad. Press, New York - London, 1973, 275-307.

[26] John, P.E.: Calculating the characteristic polynomial and the eigenvectors of a
weighted hexagonal system {benzenoid hydrocarbon with heteroatoms). Match
(Miilheim), 30 (1994), 153-160.



