

ISSN 0340-6253

MATCDY (34) 217-237 (1996)

Calculating the characteristic polynomial and the eigenvectors of a tree

Peter E. John and Göran Schild Technische Universität Ilmenau Institut für Mathematik PSF 327 D - 98684 Ilmenau Germany

Abstract

We give in this paper an algorithm T based on a general graph theoretical procedure for solving systems of linear equations (see [18]).

T allows the eigenvalues and eigenspaces of any tree to be simultaneously calculated. Some nice results for caterpillars and cospectral trees are described.

1 Introduction

1.1 Definitions and notation

Let G be a finite graph (without loops and multiple edges) with non-empty vertex set V = V(G) and edge set E = E(G) which has $n = n(G) \ (= |V(G)|)$ vertices; let $\mathbf{A} = \mathbf{A}(G)$ denote the 0-1 adjacency matrix of G and let \mathbf{I} be the $n \times n$ identity matrix. The polynomial $\det(\lambda \mathbf{I} - \mathbf{A})$ in λ and its roots are called the **characteristic** $\mathbf{polynomial}$ of G, denoted by $P_G(\lambda)$, and the **eigenvalues** of G, respectively. Let λ^o be an eigenvalue of G and let $\mathbf{0}$ denote the zero vector on n components. The set $\mathbf{X}^o = \mathbf{X}(\lambda^o)$ of all solutions \mathbf{x} of the equation

$$(\lambda^o \cdot \mathbf{I} - \mathbf{A}) \cdot \mathbf{x} = \mathbf{0}$$

forms the eigenspace of G belonging to λ^o and every non-zero $\mathbf{x}^o \in \mathbf{X}^o$ (with $|\mathbf{x}^o| = 1$) is a (normalized) **eigenvector** of G belonging to λ^o . (In Hückel theory, these vectors are called "molecular orbitals" by chemists.)

A tree T is a connected graph that has no cycle.

A forest F is a graph whose components are trees.

The number of edges of a Graph G which are incident with a vertex v of G is called the **valency** of v, denoted by val(v, G).

Vertex $v \in V(T)$ is called an isolated vertex, pendent vertex or branching vertex of T if and only if val(v,T) = 0, val(v,T) = 1 or $val(v,T) \ge 3$, respectively (Figure 1).

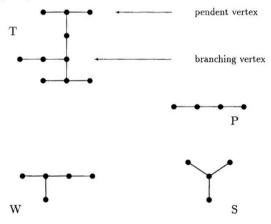


Figure 1

A whirl W is a tree with at most one branching vertex. A star S is a whirl with exactly one branching vertex v^* and no vertices of valency 2. A path P is a whirl without branching vertex (Figure 1). The trivial graph is the graph with only one vertex (and no edges).

1.2 Chemical connection and literature

The interesting eigenvalue-eigenvector problem of a tree has attracted the attention of many theoretical chemists over a long period of time. First results for simple polyenes (paths with even numbers of vertices, see Fig. 2) are given by E. Hückel [1], W.G. Penney [2], J.E. Lennard-Jones [3], C.A. Coulson [4], G.W. Wheland [5] and R.S. Mulliken and C.A. Rieke [6]. H.H. Günthard and H. Primas [7] and U. Wild, J. Keller and H.H. Günthard [8] showed that the eigenvalue-eigenvector problem is of interest in Hückels theory [1]. Much information about the early approaches to Hückel theory of organic compounds are contained in the classical books of C.A. Coulson and A. Streitwieser, Jr. [9], and C.A. Coulson, B.O. Leary and R.B. Mallion [10]. For more details concerning eigenvalues and eigenvectors of a graph see the

mathematical monographs of D.M. Cvetković, M. Doob and H. Sachs [11], and D.M. Cvetković, M. Doob, I. Gutman and A. Torgašev [12].

For trees T, recursive formulas for calculating $P_T(\lambda)$ were developed by E. Heilbronner [13] and F. Harary, C. King, A. Mowshowitz and R.C. Read [14]. A table of all eigenvalues for all trees with no more than 10 vertices is contained in [11].

For paths and stars there are explicit formulas for $P_T(\lambda)$, $T \in \{P, S\}$, [3, 9, 15, 16] for all eigenvalues [3, 9, 16, ?] and for all eigenvectors [3, 9, 16].

In this paper an algorithm **T** based on a general graphentheoretical procedure for solving systems of linear equations, see [18], is developed. **T** allows the eigenvalues and eigenspaces of any tree to be simultaneously calculated.

2 Path systems of a tree

Let T be a tree.

If n = 1 then T is called a trivial tree (or trivial path).

If n > 1, put $V_1 = V_1(T) := \{v \mid v \in V(T) \text{ and } val(v, T) = 1\}$, $V_b = V_b(T) := \{v \mid v \in V(T) \text{ and } val(v, T) \ge 3\}$ and $n_1 = n_1(T) := |V_1|, n_b = n_b(T) := |V_b|$. Clearly, $n_b(P) = 0$ for every path P.

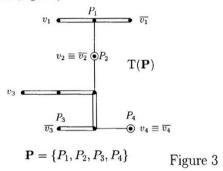
The following fact is well known and easy provable (see [19]).

Observation 1:

Let u and v be distinct vertices of a tree T. Then there exists in T exactly one path P(u,v) with end vertices u,v (immediate).

A path system (PS) of T is a set of pairwise (vertex) disjoint paths of T (trivial paths being admitted).

A complete path system (CPS) P = P(T) of T is a PS which covers all vertices of T (Figure 3).



Let $\Pi = \Pi(T)$ denote the set of all CPSs of T. For $\mathbf{P} \in \Pi$, put $p = p(\mathbf{P}) := |\mathbf{P}|$.

Observation 2:

For every tree T and every $P \in \Pi$,

$$\left\lceil \frac{n_1}{2} \right\rceil \le p \le n,$$

where [x] is the least integer not less than x.

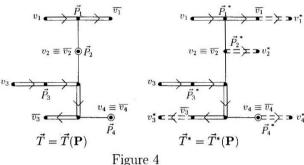
The proof is simple.

The elements of **P** are denoted by $P_k = P(v_k, \overline{v}_k), k = 1, 2, ..., p$ (Figure 3).

3 The algorithm

Let T be a tree and $\mathbf{P} \in \mathbf{\Pi}$. Let $T(\mathbf{P})$ be a drawing of T in which the edges of \mathbf{P} are fat (Figure 3).

For k=1,2,...,p, direct all edges of $P_k=P(v_k,\overline{v}_k)$ towards vertex \overline{v}_k . Thus $T(\mathbf{P})$ is turned into a partially directed tree $\overrightarrow{T}=\overrightarrow{T}(\mathbf{P})$ (with directed paths \overrightarrow{P}_k) (Figure 4).



The points v_k are called the **sources** of \overrightarrow{T} . Every oriented path $\overrightarrow{P_k}$ of \overrightarrow{T} is prolonged beyond its point $\overline{v_k}$ by one directed edge $\overrightarrow{e_k}^*$ connecting $\overline{v_k}$ with an additional "virtual" vertex v_k^* , thus \overrightarrow{T} is turned into a figure $\overrightarrow{T}^* = \overrightarrow{T}^*(\mathbf{P})$ (Figure 4).

The points v_k^* are called the **sinks** of \overrightarrow{T} . For any vertex v of \overrightarrow{T} which is not a source let v^+ be its unique predecessor and let $N^+(v) := N(v^+) - \{v\}$ be the set of neighbours of v^+ which are different from v (Figure 5).

Algorithm T

To every vertex v of \overrightarrow{T}^* assign a vector $\mathbf{d}(v,\lambda) = (d_1(v,\lambda), d_2(v,\lambda), ..., d_p(v,\lambda))$ accordings to the following rules.

- (T.1) For a source v_k put $\mathbf{d}(v_k, \lambda) = (\delta_{1k}, \delta_{2k}, ..., \delta_{pk})$, where $\delta_{ii} = 1$ and $\delta_{ik} = 0$ for $i \neq k$ (i, k = 1, 2, ..., p);
- (T.2) for any vertex v of \overrightarrow{T}^* which is not a source, put $\mathbf{d}(v,\lambda) = \lambda \cdot \mathbf{d}(v^+,\lambda) \sum_{v \in N(V)} \mathbf{d}(v',\lambda).$

It is easy to see that, running through \overrightarrow{T}^* from the sources to the sinks, we have no difficulty in successively calculating the vectors $\mathbf{d}(v,\lambda)$ which are thus uniquely determined by (T.1) and (T.2). Label the vertices of \overrightarrow{T}^* which are distinct from the sources and sinks in any order as $v_{p+1}, v_{p+2}, ..., v_n$. Form the $n \times p$ matrix

$$\mathbf{D}(T(\mathbf{P}), \lambda) = (\mathbf{d}^{T}(v_{1}, \lambda), \mathbf{d}^{T}(v_{2}, \lambda), ..., \mathbf{d}^{T}(v_{n}, \lambda))^{T} = (d_{k}(v_{i}, \lambda))$$

$$(i = 1, 2, ..., n; k = 1, 2, ..., p)$$

and die $p \times p$ matrix

$$\mathbf{D}^{\star}(T(\mathbf{P}), \lambda) = (\mathbf{d}^{\mathrm{T}}(v_{1}^{\star}, \lambda), \mathbf{d}^{\mathrm{T}}(v_{2}^{\star}, \lambda), ..., \mathbf{d}^{\mathrm{T}}(v_{p}^{\star}, \lambda))^{\mathrm{T}} = (d_{k}(v_{j}^{\star}, \lambda))$$

$$(k, j = 1, 2, ..., p).$$

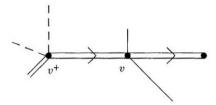


Figure 5

Theorem 1:

$$P_T(\lambda) = det \underline{D}^*(T(\mathbf{P}), \lambda).$$

Theorem 2:

Let λ^0 be an eigenvalue of T, let \mathbf{y}^0 be a non-trivial solution of (*) $\mathbf{D}^{\bullet}(T(\mathbf{P}), \lambda^0) \cdot \mathbf{y}^0 = \mathbf{0}$

(**)
$$\mathbf{x}^0 = \mathbf{D}(T(\mathbf{P}, \lambda^0) \cdot \mathbf{y}^0.$$

Then the vector \mathbf{x}^0 is an eigenvector of T belonging to λ^0 , and all eigenvectors belonging to λ^0 can be obtained this way.

Both theorems follow from theorems in [18].

Example 1:

For the tree T in Figure 1 (see Figure 6 with labelled vertices) we obtain the following matrices:

$$\begin{pmatrix} v_1 & v_5 & v_6 & \\ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}^T & \begin{pmatrix} \lambda \\ 0 \\ 0 \end{pmatrix}^T & \begin{pmatrix} \lambda^2 - 1 \\ -1 \\ 0 \\ 0 \end{pmatrix}^T & \begin{pmatrix} \lambda^3 - 2\lambda \\ -\lambda \\ 0 \\ 0 \end{pmatrix}^T \\ & & & & & & \\ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}^T & & & \begin{pmatrix} \lambda^3 - 2\lambda \\ -\lambda \\ 0 \\ 0 \end{pmatrix}^T \\ & & & & & \\ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}^T & & & & \\ \begin{pmatrix} \lambda \\ -\lambda \\ -\lambda^2 + 1 \\ 0 \end{pmatrix}^T \\ & & & & & \\ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}^T & & & & \\ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}^T & & & & \\ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}^T & & & & \\ \begin{pmatrix} \lambda \\ -\lambda^2 + 1 \\ 0 \end{pmatrix}^T \\ & & & & \\ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}^T & & & & \\ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}^T & & & \\ \begin{pmatrix} 0 \\ \lambda^2 - 1 \\ 0 \\ 0 \end{pmatrix}^T & & & \\ \begin{pmatrix} 0 \\ \lambda^2 - 1 \\ 0 \\ 0 \end{pmatrix}^T & & & \\ \begin{pmatrix} 0 \\ \lambda^2 - 1 \\ 0 \\ 0 \end{pmatrix}^T & & & \\ \begin{pmatrix} 0 \\ \lambda^2 - 1 \\ 0 \\ 0 \end{pmatrix}^T & & & \\ \begin{pmatrix} 0 \\ \lambda^2 - 1 \\ 0 \\ 0 \end{pmatrix}^T & & & \\ \begin{pmatrix} 0 \\ \lambda^3 - 2\lambda \\ 0 \end{pmatrix}^T & & & \\ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}^T & & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda^3 + 2\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0 \\ 1 \\ -\lambda \\ \lambda \end{pmatrix}^T & & \\ \begin{pmatrix} 0$$

Figure 6

$$\mathbf{D}(T(\mathbf{P}),\lambda) = \begin{pmatrix} 1 & 0 & 0 & 0 & \lambda & \lambda^2 - 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & -\lambda \\ 0 & 0 & 1 & 0 & 0 & 0 & \lambda & \lambda^2 - 1 & \lambda^3 - 2\lambda & \lambda^4 - 3\lambda^2 + 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix}^{\mathrm{T}}$$

and

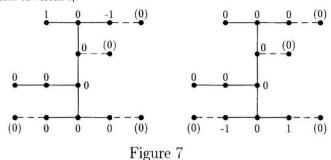
$$\mathbf{D}^{\bullet}(T(\mathbf{P}),\lambda) = \left(\begin{array}{cccc} \lambda^3 - 2\lambda & -\lambda & 0 & 0 \\ -\lambda & \lambda & -\lambda^2 + 1 & 1 \\ 0 & -\lambda^2 + 1 & \lambda^5 - 4\lambda^3 + 3\lambda & -\lambda^3 + 2\lambda \\ 0 & 0 & -\lambda & \lambda \end{array} \right)^{\mathrm{T}}.$$

Thus

$$P_T(\lambda) = \varepsilon \cdot det \mathbf{D}^*(T(\mathbf{P}), \lambda) = \lambda^{10} - 9\lambda^8 + 25\lambda^6 - 23\lambda^4 + 4\lambda^2.$$

 $\lambda^0=0$ is a double root of $P_T(\lambda)$, $\mathbf{y}_1^0=(1,0,0,0)$, $\mathbf{y}_2^0=(0,0,0,1)$ are linearly independent solutions to (*) and the vectors \mathbf{x}_1^0 , \mathbf{x}_2^0 corresponding to \mathbf{y}_1^0 , \mathbf{y}_2^0 by (**) are eigenvectors of T belonging to λ^0 ; their components x_{1i}^0 , x_{2i}^0 are given in Figure 7,

close to vertex v_i .



The zeros in the brackets only serve for checking the correctness of the calculation. For the application of the algorithm to be developed, it is very desirable to have a CPS with minimal number of paths.

4 Whirls and minimal complete path systems

Let T be a tree and $\mathbf{P} \in \mathbf{\Pi}$. A minimal complete path system (MCPS) $\overline{\mathbf{P}}$ of T is a CPS with a minimal number of paths $\overline{p} = |\overline{\mathbf{P}}| = min\{|\mathbf{P}| | \mathbf{P} \in \mathbf{\Pi}\}$. We need some further notations.

A CPS of a forest F is the disjoint union of the CPSs of all components of F.

A whirl system (WS) of T is a set of pairwise (vertex) disjoint whirls of T (also trivial whirls are allowed).

A complete whirl system (CWS) $\mathbf{W} = \mathbf{W}(T)$ of T is a WS which covers all vertices of T (Figure 8).

Let $\Omega = \Omega(T)$ denote the set of all CWSs of T. For $\mathbf{W} \in \Omega$ let $w = w(\mathbf{W}) = |\mathbf{W}|$ denote the number of whirls in \mathbf{W} .

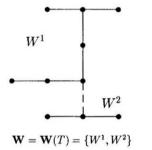


Figure 8

Observation 3:

For every (branched) tree T and every $\mathbf{W} \in \Omega(T)$,

$$\left\lceil \frac{n_b + 2}{3} \right\rceil \le w \le n.$$

Proof:

Let E and \mathbf{E} denote the edge set of T and of \mathbf{W} , respectively. Every $W \in \mathbf{W}$ has at most one branching vertex and every edge from the difference set $E - \mathbf{E}$ is incident with at most two branching vertices of T which are not branching vertices of the whirls of \mathbf{W} . Therefore

$$n_b \le w + 2 \mid E - \mathbf{E} \mid = w + 2(w - 1) = 3w - 2.$$

Next we give a sketch of an algorithm finding a MCPS of a (branched) tree T. First we construct a sequence $\mathbf{W} = (W^1, W^2, ..., W^W)$ of whirls $W^i \subseteq T$, forming a CWS in the following way.

If T itself is a whirl then set $\mathbf{W} = \{W^1\}$. Otherwise find a branching vertex v_1 and an edge $e_1 = (u_1, v_1)$ in T such that after removing e_1 tree T decomposes into a whirl W^1 containing v^1 and a subtree T^1 of T containing u_1 (Figure 9).

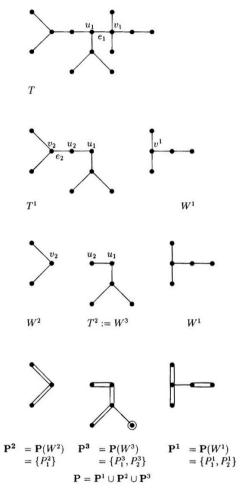


Figure 9

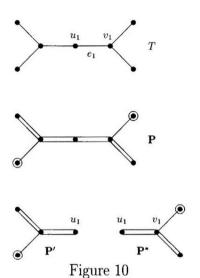
One can easily check that such an edge e_1 exists. If T^1 is not a whirl then repeat this procedure in order to get an edge $e_2 = (u_2, v_2)$ of T^1 such that $T^1 - e_2$ consists of a whirl W^2 (containing v_2) and a tree T^2 (containing u_2). Continue until a tree T^{w-1} is found which is itself a whirl: $T^{w-1} = W^w$. A sequence $(W^1, W^2, ..., W^w)$ of a tree T constructed this way will be called an **outer whirl sequence** (OWS) of T, denoted by OWS(T).

Let $n_1^i = n_1(W^i)$ be the number of pendent vertices of W^i , i = 1, 2, ..., w. For every whirl W^i there is a CPS $\mathbf{P}^i = \{P_1^i, P_2^i, ..., P_p^i\}$ with exactly $P^i = n_1^i - 1$ paths (Figure 9); such a system can be found by the following procedure. Connect two arbitrary pendent vertices of W^i by the path P_1^i . Removing the edges and vertices of p_1^i from W^i results in a graph consisting of paths $P_2^i, P_3^i, ..., P_{n_1^i-1}^i$. It is easy to see that \mathbf{p}^i is an MCPS for W^i . The path system $\mathbf{P} = \mathbf{P}^1 \cup \mathbf{P}^2 \cup ... \cup \mathbf{P}^w$ is a CPS of T and it consists of exactly $n_1^1 + n_1^2 + ... + n_1^w - w$ paths. \mathbf{P} is, in fact, a MCPS; this follows from the next theorem.

Theorem 3:

Any CPS of T has no less than $n_1^1 + n_1^2 + ... + n_1^w - w$ paths.

Proof by induction on the number w of whirls. If w = 1, the statement is evidently true. Now assume that it is true for all trees having an outer whirl sequence with no more than w whirls and let T be a tree with $OWS(T) = (W^1, W^2, ..., W^{w+1})$. The tree T^1 has the $OWS(W^2, W^3, ..., W^{w+1})$. Let \mathbf{P} be a CPS of T. The deletion of all edges and vertices of W^1 and of e_1 from the paths of \mathbf{P} results in a CPS \mathbf{P}' of T^1 , and removing all edges and vertices of T^1 . Except u_1 from the paths of \mathbf{P} we obtain a CPS \mathbf{P}^* of the whirl $W^1 \cup e_1$ (Figure 10). Exactly one path of \mathbf{P} has vertices both in \mathbf{P}^* and \mathbf{P}' that is the path containing u_1 .



Therefore we get $\begin{array}{c|c} |\mathbf{P}| = |\mathbf{P^*}| + |\mathbf{P'}| - 1. \\ \text{By induction assumption} \\ |\mathbf{P'}| \geq n_1^2 + n_1^3 + \ldots + n_1^{w+1} - w \text{ and} \\ |\mathbf{P^*}| \geq n_1^1. \\ \text{Combeing these equations and inequalities we obtain} \\ |\mathbf{P}| \geq n_1^1 + n_1^2 + \ldots + n_1^{w+1} - (w+1) \\ \text{proving the assertion.} \end{array}$

Remark: The problem of minimizing the number of paths in a CPS of a tree is equivalent to the problem of maximizing a set in an intersection of two matroids (see [20]).

This problem having a good solution algorithm (i.e., being solvable in polynomial time), it is conceivable that there are also other simple algorithms for finding a MCPS.

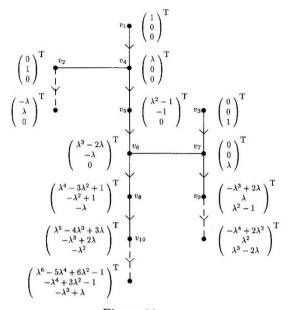


Figure 11

Example 2:

For the tree T in Figure 1 (see Figure 11 with labelled vertices) we obtain the following matrices:

$$\mathbf{D}(T(\overline{\mathbf{P}}),\lambda) = \begin{pmatrix} 1 & 0 & 0 & \lambda & \lambda^2 - 1 & 0 & \lambda^4 - 3\lambda^2 + 1 & -\lambda^3 + 2\lambda & \lambda^5 - 4\lambda^3 + 3\lambda \\ 0 & 1 & 0 & 0 & -1 & 0 & -\lambda^2 + 1 & \lambda & -\lambda^3 + 2\lambda \\ 0 & 0 & 1 & 0 & 0 & \lambda & -\lambda & \lambda^2 - 1 & -\lambda^2 \end{pmatrix}^{\mathrm{T}}$$

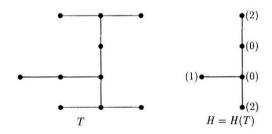
and

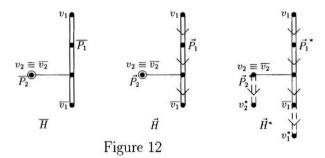
$$\mathbf{D}^{\bullet}(T(\overline{\mathbf{P}}),\lambda) = \begin{pmatrix} -\lambda & \lambda^6 - 5\lambda^4 + 6\lambda^2 - 1 & -\lambda^4 + 2\lambda^2 \\ \lambda & -\lambda^4 + 3\lambda^2 - 1 & \lambda^2 \\ 0 & -\lambda^3 + \lambda & \lambda^3 - 2\lambda \end{pmatrix}^{\mathrm{T}}.$$

Thus $P_T(\lambda) = \varepsilon \cdot det \mathbf{D}^*(T(\overline{\mathbf{P}}), \lambda)$ and for the double root $\lambda^0 = 0$ of $P_T(\lambda)$, $\mathbf{y}_1^0 = (1, 0, 0)$, $\mathbf{y}_2^0 = (1, -1, 0)$ are linearly independent solutions to (*) and the vectors $\mathbf{x}_1^0, \mathbf{x}_2^0$ corresponding to $\mathbf{y}_1^0, \mathbf{y}_2^0$ by (**) are eigenvectors of T belonging to λ^0 ; their components are given in Figure 7.

5 Another algorithm to calculate $P_T(\lambda)$

Let T be a tree with at least 3 vertices and v" $\in V(T)$. Let $val_1(v$ ", T) = $\mid N(v$ ", T) $\cap V_1(T) \mid$ denote the number of pendent vertices of T which are adjacent to vertex v". Assign to every vertex v of T the weight $w(v) = w(v,T) := val_1(v,T)$ and delete all pendent vertices of T. Thus T is turned into a weighted tree which we denote by H = H(T). H is called the **reduced tree** of T (Figure 12). Find an MCPS $\overline{\mathbf{P}}(H)$ of H with q paths and construct $H(\overline{\mathbf{P}})$, \overrightarrow{H} , \overrightarrow{H} " (Figure 12) as described above for T.





Algorithm H

To every vertex v of \overrightarrow{H}^* assign a vector $\mathbf{f}(v,\lambda) = (f_1(v,\lambda), f_2(v,\lambda), ..., f_q(v,\lambda))$ by use of the following rules

- (H.1) For a source v_k put $\mathbf{f}(v_k, \lambda) = (\delta_{1k}, \delta_{2k}, ..., \delta_{qk}),$ where $\delta_{ii} = 1$ and $\delta_{ik} = 0$ for $i \neq k$ (i, k = 1, 2, ..., q);
- (**H**.2) for any vertex v of \overrightarrow{H}^* which is not a source, put $\mathbf{f}(v,\lambda) = (\lambda w(v^+) \cdot \mu) \cdot \mathbf{f}(v^+,\lambda) \sum_{v' \in N^+(v)} \mathbf{f}(v',\lambda),$ where $\mu := 1/\lambda$.

It is easy to see that the vectors for the sink vertices are uniquely determined by $(\mathbf{H}.1)$ and $(\mathbf{H}.2)$. Form the $q \times q$ matrix

$$\mathbf{F}^{\star}(H(\overline{\mathbf{P}}), \lambda) = (\mathbf{f}^{T}(v_{1}^{\star}, \lambda), \mathbf{f}^{T}(v_{2}^{\star}, \lambda), ..., f^{T}(v_{q}^{\star}, \lambda))^{T} = (f_{k}(v_{i}^{\star}, \lambda))$$

$$(i, k = 1, 2, ..., q).$$

Theorem 4:

$$P_T(\lambda) = \lambda^{n_1} \cdot det \mathbf{F}^*(H(\overline{\mathbf{P}}), \lambda), \text{ and } n_1 = n_1(T).$$

Note that this theorem is a modification of a theorem in [18].

The polynomial

$$f_T(\lambda) := det \mathbf{F}^{\bullet}(H(\overline{\mathbf{P}}), \lambda)$$
 is called reduced characteristic polynomial of T .

Note that this algorithm is also applicable for calculating the eigenvectors of T which belong to an eigenvalue $\lambda \neq 0$ using the procedure described above in slightly modified form.

Example 3:

The simple calculation of $P_T(\lambda)$ is given in Figure 13.

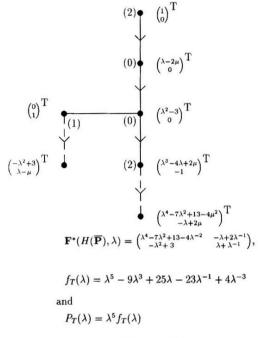
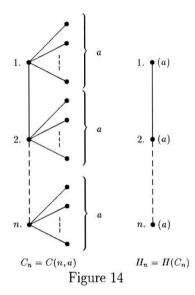


Figure 13

6 Caterpillars

Let $C_n := C(n, a)$ be a caterpillar tree such that the reduced tree $H_n := H(C_n)$ is a weighted path with n vertices and every vertex has weight a (a = 1, 2, ...) (Figure 14).



Note that C_n has N=n(a+1) vertices. In this case, $P_{C_n}(\lambda)=\lambda^{an}\cdot f_{C_n}(\lambda)$, where $f_{C_n}(\lambda)$ satisfies the recursion

$$(\otimes) \quad f_{C_n}(\lambda) = (\lambda - \frac{a}{\lambda}) \cdot f_{C_{n-1}}(\lambda) - f_{C_{n-2}}(\lambda) \text{ (by use of algorithm \mathbf{H})}.$$

Thus (\otimes) - in connection with the initial expressions $f_{C_0}(\lambda) := 1, \ f_{C_1}(\lambda) = \lambda - \frac{a}{\lambda}$ - enables $f_{C_n}(\lambda)$ and $P_{C_n}(\lambda)$ to be easily calculated. The result is the formula

$$f_{C_n}(\lambda) = \sum_{i=0}^n (-1)^i k_n(i) \lambda^{n-2i}$$

where $k_n(i)$ is the number of matchings with exactly i edges in C_n (see [17]). It is easy to prove (by induction) the validity of the following equations

$$k_n(i) = \begin{cases} 1, & \text{if} & n = 0 \\ a^n, & \text{if} & n = i > 0 \\ a \cdot k_{n-1}(i-1) + k_{n-2}(i-1) + k_{n-1}(i), & \text{if} & n \geq 2 \\ & \text{and} & i = 1, 2, ..., n-1, \end{cases}$$

$$k_n(i) = a^{2i-n} \cdot k_n(n-i) \text{ or } a^{n-i} \cdot k_n(i) = a^i \cdot k_n(n-i)$$

and

$$k_n(i) = \sum_{j=0}^{i} \alpha_n(i,j)a^{i-j},$$

where $\alpha_n(i,j) = \binom{n-j}{i} \cdot \binom{i}{j}.$

Therefore, the explicit formula for the characteristic polynomial of C_n is

$$(\otimes \otimes) P_{C_n}(\lambda) = \lambda^{an} \cdot \sum_{i=0}^n (-1)^i \left\{ \sum_{j=0}^i \binom{n-j}{i} \binom{i}{j} a^{i-j} \right\} \cdot \lambda^{n-2i} =$$

$$= \sum_{i=0}^n (-1)^i \left\{ \sum_{j=0}^i \binom{n-j}{i} \binom{i}{j} a^{i-j} \right\} \lambda^{N-2i}.$$
(1)

The eigenvalues for C_n are described in the following observation.

Observation 4:

 C_n has the eigenvalue 0 with multiplicity N-2n=(a-1)n (because of $(\otimes \otimes)$). The remaining 2n eigenvalues can easily be obtained from (\otimes) by using the trigonometric transformation $\lambda - \frac{a}{\lambda} = 2\cos\varphi: \lambda_k^{\pm} = \cos\frac{k\pi}{n+1} \pm \sqrt{\cos^2\frac{k\pi}{n+1}} + a \quad (k=1,2,...,n).$ If λ_0 is a root of $P_{C_n}(\lambda)$, then $|\lambda_0| < 1 + \sqrt{a+1}$ and

$$\lim_{n\to\infty} \max\{|\lambda| | P_{C_n}(\lambda) = 0\} = 1 + \sqrt{a+1}.$$

Note that the $\alpha_n(i,j)$ play also a role in the theory of dimer coverings of square lattices, see [21, 22], see also [23].

7 Cospectral trees

Two nonisomorphic graphs G', G'' are called cospectral if $P_{G'}(\lambda) = P_{G''}(\lambda)$. In 1957 L. Collatz and U. Sinogowitz [24] showed that the two trees T' = T'(a,b) and T'' = T''(c,d) given in Figure 15 are cospectral if (a,b,c,d) = (3,3,4,1).

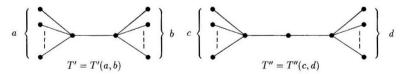


Figure 15

Define

```
\begin{array}{lll} \tau_1(k) &:= (k+3,2k+3,2k+4,k+1), \\ \tau_2(u) &:= (u^2+u+1,u^2+u+1,(u+1)^2,u^2), \\ \tau_3(u,k) &:= (u^2+(k+1)u+1,u^2+(k+1)(u+1),u^2+(k+2)u+k+1,u^2+ku) \end{array}
```

where k and u are integers. Note that $\tau_1(0) = \tau_2(1) = \tau_3(1,0) = (3,3,4,1)$. Trees T' and T'' are cospectral if $(a,b,c,d) = \tau_1(k), \ k \geq 0$, and if $(a,b,c,d) = \tau_2(u), \ u \geq 1$; this was shown by Mowshowitz [15] (1972) and by Schwenk [25] (1973), respectively. Using algorithm H we find that T' and T'' are also cospectral if and only if $(a,b,c,d) = \tau_3(u,k), \ k \geq 0, \ u \geq 1$.

8 Concluding remark

Note that Algorithm T can be applied in modified form (see, e.g., [26]) also for edge and vertex weighted trees.

This paper has been supported by Deutsche Forschungsgemeinschaft (Jo-231/1-2).

References

- Hückel, E.: Quantentheoretische Beiträge zum Benzolproblem. Z. Phys. 70 (1931), 204-286.
- [2] Penney, W.G.: The electronic structure of some polyenes and aromatic molecules III Bonds of fractional order by the pair method. Proc. Roy. Soc. (London) A 158 (1937), 306-324.
- [3] Lennard-Jones, J.E.: The electronic structure of some polyenes and aromatic molecules I. Proc. Roy. Soc. A 158 (1937), 280-296.
- [4] Coulson, C.A.: The electronic structure of some polyenes and aromatic molecules VII Bonds of fractional order by the molecular orbital method. Proc. Roy. Soc. (London) A 169 (1939), 413-428.
- [5] Wheland, G.W.: The resonance energies of unsaturated and aromatic molecules.J. Am. Chem. Soc. 63 (1941), 2025-2027.
- [6] Mulliken, R.S. and C.A. Rieke: Improved computations on conjugation and hyperconjugation. J. Am. Chem. Soc. 63 (1941), 1770-1771.
- [7] Günthard, H.H. and H. Primas: Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bedingungen. Helv. Chim. Acta 39 (1956), 1645-1653.

- [8] Wild, U., J. Keller and H.H. Günthard: Symmetry properties of the Hückel matrix. Theoret. Chim. Acta 14 (1969), 383-395.
- [9] Coulson, C.A. and A. Streitwieser: Dictionary of π-Electron Calculations. Pergamon Press. Inc., San Francisco, 1965.
- [10] Coulson, C.A., B. O'Leary and R.B. Mallion: Hückel Theory for Organic Chemists. Academic Press, London, 1978.
- [11] Cvetković, D.M., M. Doob and H. Sachs: Spectra of Graphs Theory and Application. VEB Deutscher Verlag der Wissenschaften, Berlin, 1982.
- [12] Cvetković, D.M., M. Doob, I. Gutman and A. Torgašev: Recent Results in the Theory of Graph Spectra, Annals of Discrete Mathematics, N° 36, North-Holland, Amsterdam-New York-Oxford-Tokyo, 1988.
- [13] Heilbronner, E.: Das Kompositions-Prinzip: Eine anschauliche Methode zur elektronen-theoretischen Behandlung nicht oder niedrig symmetrischer Molekeln im Rahmen der MO-Theorie. Helv. Chim. Acta 36 (1953), 170-188.
- [14] Harary, F., C. King, A. Mowshowitz and R.C. Read: Cospectral graph and digraphs. Bull. London Math. Soc. 3 (1971), 321-328.
- [15] Mowshowitz, A.: Graphs, groups and matrices. J. Comb. Theory, 12 (B) (1972), 177-193.
- [16] Lovász, L.: Combinatorial Problems and Exercises. Akademia Kiadó, Budapest, 1979.
- [17] Lovász, L. and J. Pelikán: On the eigenvalues of trees. Periodica Math. Hung. 3 (1-2) (1973), 175-182.
- [18] Al-Khnaifes, Kh. and H. Sachs: Graphs, linear equations, determinants, and the number of perfect matchings. In: Contemporary Methods in Graph Theory. (R. Bodendiek, Ed.), B.I. Wissenschaftsverlag Mannheim-Wien-Zürich, 1990, 47-71.
- [19] Sachs, H.: Einführung in die Theorie der endlichen Graphen. I, Teubner, Leipzig, 1970.
- [20] Recski, A.: Matroid Theory and its Applications. Akademiai Kiadó, Budapest, 1989.
- [21] Sachs, H. and H. Zernitz, Discr. Math., in press.
- [22] John, P.: Note on a modified Pascal triangle connected with the dimer problem. J. Mol. Struct. (Theochem), 277 (1992), 329-332.

- [23] Stanton, R.G. and D.D. Cowan: Note on a "square" functional equation. SIAM Rev. 12 (1970), 277-279.
- [24] Collatz, L. and U. Sinogowitz: Spektren endlicher Graphen. Abh. Math. Sem. Univ. Hamburg 21 (1957), 63-77.
- [25] Schwenk, A.J., in: New Directions in the Theory of Graphs. (F. Harary, Ed.) Acad. Press, New York - London, 1973, 275-307.
- [26] John, P.E.: Calculating the characteristic polynomial and the eigenvectors of a weighted hexagonal system (benzenoid hydrocarbon with heteroatoms). Match (Mülheim), 30 (1994), 153-169.