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Abstract: Within the Hiickel molecular orbital theory, the
angle of frontier molecular orbital energy is defined and an
expression for the highest occupied molecular orbital (HOMOD)
energy of alternant hydrocarbons is derived. Conditions for
the highest and the lowest values of HOMO energy are

discussed.

1. Introduction.

The frontier molecular orbital {FMO) onergiesl‘ of
molecules attracted a great deal of attention because
even within the framework of Hiickel molecular orbital theory
(EMO)}, many physico-chemical properties of molecules are
determined by, or are at least highly dependent upon the
frontier molecular orbital energy gap that is the separation
between the highest occupied and the lowest unoccupied
molecular orbital energies, namely HOMO-LUMO energy
difference?r3, Also , some physico-chemical properties

such as 1light absorption depend on HOMO-LUMO energy

separation, some other directly correlate with HOMO or LUMO
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energies itself, for instance the oxidation or reduction

potentialsz'3

etc. In recent decades, many graph theoretical
techniques have been developed which are helpful to analyse
and partially understand the dependence of the m-electron
properties of conjugated moclecules on molecular tc:p<:1v:>gy‘"B
In the present study, wusing the classical HMO approach
first , an expression for the HOMO energy of alternant
hydrocarbons has been derived. Second , the conditions for

the maximum and minimum values of FMO energies are sought.

2. Theory.

S8uppose G(2n,e) is the molecular graph of an even
alternant hydrocarbon within the constraints of the Hiickel
molecular orbital theory. Let the occupied molecular orbital
energies be X; > X, » ....> X4 > X, in units of 3.2'3.

Now, consider an n-1 dimensional Euclidean linear space9

and let vectors A and B be defined as follows.

A(1,1,....,1) and  B(X;Xp, XpXp, ... Xp_1Xp)

Then, the scalar product10 of these vectors can be expressed
as,
n-1
A.B = 5 XX,
=
It is equivalent to
n-1 n-1
X, 5 X3 = ((n-1)E x3x2 11/2 cos 1, (1)
i=1 i=1

which can be simplified into
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n-1
X; = ((n-1) & x:?_ 1Y/2 cos L, (2)
i=1

Definition 1: The angle, L is called the angle of frontier

nl
molecular energy.
It is known that the total m-electron energy2'3 (En) for
alternant hydrocarbons can be expressed asll,
= 1/2
Ep =2 5 X; = 2(ne) cos Op (3)
i=1
where O is called the angle of total m-electron enerqyll.
Multiplying both sides of eg.2 by 2 and considering12 that
n
b= xf = e and
i=1
n-1
2%;:1 = By - 2X, (4

one obtains

Ep = 2X,; = 2((n-1}(e - x:))lfz cos L, (5)

Bquaring both sides of eq.5 and solving for Xp, eg.6 is

produced.
X, = (Ey - D)/2P (6)
where
D=((n-1) (4eP -E;?))1/2 cos L (7)
and
P =1+ (n-1){cos Ly)? (8)

Hence, eq.6 ,in form, is a certain combination of E . , n , e

and cos L;. Therefore, the variations of X, values of
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isomeric compounds are dictated merely by E;, and cos L,
values. On the other hand, from eqgs. 7 and 8 , the necessary

condition for a real X, is obtained as
2 2 _ L
(cos Ln) > (En. 4e)/4e(n-1) (9)

Substitution of P = Er /2y into egs. 8,7 and ther into egs
produces a more informative and suitable expression for X, as

a function of y that is
X, =y - (2B y2 - (5,2 + 4e)y + 2eE )/2E; )Y/2  [10)

On the other hand, using eq.10 and taking the derivative of

X with respect to L, (using the chain rule) and equating to

n
zero produces L= 0, (2k+l)mr . Hence, insertion of cos Ly=1

intc eqgs.8 through 6 yields
(X )min = (Eg /20) —((1- 1/n)(e- E % /4n))1/2 (11)

Note that ineq.9 requires D> 0 thus, the maximum value of X

can be obtained by inserting ineg.9 into eg.6 that is

(Xp)pax = 2e/Eq (12)

Theorem 1. Let A be an even alternant hydrocarbon having
molecular graph G(2n,e). If the total m-electron energy is
greater than z(e{n—l))l/2 then A cannot have any nonbonding
molecular orbitals (NBMO).
Proof.

Since, an NBMO possesses X, = 0 , by inserting this value

into eg.6 and using eq.7 and 8 one gets
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{cos I‘n) = er /4e(n-1) (13)
but obviously, cos Lp<s1 thus , eg.13 yields

E; < 2(e(n-1))*/? (14)

Hence, any even alternant hydrocarbon which does not fulfill
the above inequality cannot have X;= 0 . Note that ineq.14
necessitates cos O £ ((n—l)/n)l/z. For instance, in the
case of benzene which does not conform to the condition, the
possibility of having X =0 is definitely excluded (also true
for naphthalene, anthracene etc.) whereas it is possible for
eyclobutadiene, cyclooctatetraene etc. Indeed they possess
=0 .
corollary 2. Let A be an even alternant hydrocarbon whose
molecular graph possesses e edges and 2n vertices. If Exzr' 4E..
+ 4 < 4(e-1)(n-1) does not hold for A then its X, value
cannot be equal to unity.

Note that corollary 2 is true for systems for which the
required condition fails. On the other hand , inserting eq.3
for E; , the condition for corollary 2 can be expressed in

the form of

cos 0 < (1/em)1/2 (1 + ((e-1)(n-1))Y/2) (1s)

Theorem 3. Let G(N,e) be the molecular graph of an odd
alternant hydrocarbon. Then, cos O ¢ ((N—l)/(N+1))1/2
Proof.

8ince, an odd alternant hydrocarbon possesses an NBMO, it

has (N+1)/2 occupied molecular orbitals thus the number of
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components of vectors A and B considered above is (N-1)/2 .
Consequently, n in ineq.14 has to be replaced by (N+1)/2 .

Then, ineq.14 becomes ineg.l6 for odd alternant systems.

B, < (2e(N-1))1/2 (16)

o

whereas E_ (eq.3} becomes
By = (2e(N+1))1/2 cos O (17)

In the light of theorem 1 (to have an NBMO) , substituting

eqg.17 into ineq.16 and simplifying one obtains
cos O ¢ ((N-1)/N+1))1/2 (18)

3. Results and Discussion.

Equation 6 is a topological expression for the HOMO
energy of alternant hydrocarbons within the framework of
Hiickel molecular orbital theory. It is a function of E;, , n ,
e and cos L, only. It is obvious that what have been proved
and discussed so far is true for the absolute value of LUMO
energy because of the nature of FMO energies of alternant
hydrocarbonsz 3,

Since, E_ is the function of the angle of total m-

™
electron energy, Op . then the FMO energies of alternant
hydrocarbons are dictated by n and e which are related to
gross topology of the system and two angles, O and L, which
reflect the fine topologiéal changes.

Inasmuch as , E, can be topologically evaluatedl? quite

accurately, the value of cos L, has the main importance if
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one wishes to estimate X, via eq.6. A search for the
approximate wvalue of cos L, has been carried out in the
present study for the pool of 106 benzenoid copoundsl3 which

3 and 3.23240 1075

yields mean of .930466 having 5.68542 10”7
for the standard deviation and variance, repectively. For all
the benzenoid compounds studied, it has been found that Jcos
Oy - cos L) .1 and for some of them this difference is even
much less (ca. .015) . Whereas, the mean of cos °:|r /cos I‘n is
.966256 for the same class of compounds (standard deviation:
.0136999). All these imply that the values of angle of FMO
energy of benzenoid hydrocarbons are quite comparable with
their angle of total m-electron energy values.

For the arbitrarily chosen 25 alternant hydrocarbons the
mean of cos L, yields the value of .954127 (having standarad
deviation of .0204463).

As it is clear from eqgs. 6-8, X, values of isomeric
compounds vary only because of their E,; and cos L, values.

For isomeric sets of compounds the upper and lower limits of

X

n are given by egs.11 and 12, respectively. Of these, the

former one is obtained in a classical way namely by
differentiating eq.10 with respect to L, using the chain rule
and inserting the root of the derivative into eqg.10 .
However, the derivative also becomes zero for Ep = z(e)"/z

If this happens for an alternant hydrocarbon then X, does not
have any extremum whatever the value of L, is . This

situation arises for cyclobutadiene (X, function is a

straight line , Ep = 4.000 B} which possesses two



- 164

nonbonding molecular orbitalsl4,

A search , invelving more than a hundred alternant
hydrocarbons for the validity of the condition formulated in
ineq.15 implies that indeed their cos O, values fulfill the
requirement of ineq.15 . Hence, the following conjecture can
be asserted.

Conjecture 1. For all the alternant hydrocarbons Ei’ 4Ep + 4 <

<
4(e-1)(n-1).

8ince, X,=1 for ethylene, then corollary 2 in an indirect
way leads to the principle already known that is the extended

conjugation narrows the interfrontier energy gapt.

4. Conclusion.

The angle of FMO energy of an alternant hydrocarbon is
confined to the range of 0 to arccos ((Ei— 4e)/4e(n-1))1/2,
In the case of benzenoid hydrocarbons L, is quite close to
the corresponding O, values. The FMO energies of isomeric
compounds are merely dictated by O and L, which should be

interrelated with each other implicitly.
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