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Abstract

A new approach to the elaboration of a three-dimensinal model of a chem-
ical molecule is outlined. We propose an algorithm which uses as input
interatomic geometric parameters, the molecular graph and a prescribed
point symmetry group of the molecule. The output are three-dimensional
coordinates of the atoms satisfying the prescribed combinatorial and metric
requirements and admitting the prescribed symmetry group. The steps of
the algorithm are demonstrated on a practical example. Relations between
graph automorphism groups and point symmetry groups are explained.
Keywords: molecular model, molecular graph, graph automorphisin group,
point symmetry group, group embedding, Crippen algorithm (principal
component analysis)

1 Introduction

1.1. This paper is concerned with a new mathematical method of building spa-
tial models of molecules.

Since the structure of a molecule and the behavior of its spectrum are correlated,
combinatorial and geometric molecular models are useful in order to identify
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structures from their specira and, vice versa, to predict spectra of given struc-
tures, cf. [Gri83], [ESMZKKY91], [ZE92). Spatial models allow the molecular
design of new chemical compounds with given properties, they support the search
for new ways of the synthesis of compounds. Especially, molecular spatial mod-
els play a crucial role in several applications of artificial intelligence systems in
chemistry. We mention in this connection computer aided design, expert systems,
QSAR (qualitative and quantitative structure - activity relations). Here, one of
the most attractive goals is the prediction of biological activity on the base of
some geometric and/or combinatorical descriptions of the molecules.
Experimental methods yielding the needed real data and forming the physico
chemical background in this field are molecular spectroscopy, spectroanalysis,
molecular mechanics and quantum chemistry. The obtainable data considered
here are the number and kinds of atoms (brutto formula of the compound),
presence of bonds, metric parameters defining near interatomic distances (bond
lengths, valency angles, possibly dihedral angles) and supposed point symmetry
group.

We call the model we want to get here the symmetrized molecular model. It has
to unite the information of two classical models — the Crippen model and the
molecular graph — with the symmetry group of the molecule.

1.2. Methods of construction of spatial models. There is a large number of
papers concerned with the determination of three dimensional Cartesian coordi-
nates from interatomic geometrical parameters. We cite as examples [Ess83],
[GP72], [NBBS5], [CriT7], [Cri78], [Cri8l], [Dav86], [WH86], [BS83], [ZM8T],
[Hi169], [GShT3], [VNTS], [Kle89].

All algorithms described in [Ess83], [GP72], [NBB85], [Cri77], [Cri78], [Dav86],
[WHS6], [BS83] do not take into account symmetry at all. Moreover, they do not
allow a correction of calculated geometric parameters. Paradoxically, often, these
algorithms lead to models where the geometric and the combinatorial part of in-
formation contradict each other, namely to models where cycles are not closed.
So, these methods may only yield a first approximation and be used for non-cyclic
or less complicated cyclic structures.

The Crippen algorithm yielding an essential contribution to our symmetriza-
tion algorithm has also the above mentioned disadvantages. The Crippen model
is & molecular model given in Cartesian coordinates determined from inlernal
geornetric parameters by a principal component analysis. The real molecule’s
symmetry is not taken into account in the Crippen’s algorithm. Sometimes this
is not evident, but there arc cases where the molecular model determined by
Crippen’s algorithm does not have the required symmetry. So for example, the
spatial model of trans-decalin {EKD(69] obtained by this method has the sym-
metry Cy = 2 instead of the real symmetry Cyy = 2/m (for symbols of symmetry
groups see 2.11) and the geometrical paramelers become strongly deviated. The
authors of [WS582] propose to use more advanced methods of quantum mechanics



and quantumn chemistry to augment the exactness,

Consideration of symmetry makes casier to predict vibrational spectra. Methods
described in [ZM87] and [Hil6Y] take into account the symmetry, but however, not
in a systernatic way, The determination of atoms’ site symmetry and the orbits
considered in these papers is a procedure of trial and error to be fulfilled by the
user and demanding some experience. So, for a practically working chemist this
procedure might be hard to apply.

The GO-SHERAGA algorithm described in [GSh73] is able to determine only one
symmetry element via the solution of about 100 transcendental equations. This
algorithm is not universal and contains an extensive numerical procedure.

1.3.  Our paper is based on the ’hD thesis [Z1a91] of one of the authors,
L. Zlatina. This thesis was worked out within the scope of a rather gencral
project: to elaborate a package of computer programs for the enumeration of
possible stereoisomers to be used in the practical work of chemists. The system-
atical use of the information about the symmetry of the molecules was outlined
from the early beginning as its essential feature (see [4192}).

The mathematical background of the initial approach was revised by the other two
authors who also wrote new sections dealing with graph automorphism groups
and symmetry groups. They feel that this impulse started from a physico-
chemical problem generates more mathematically interesting questions being
worth to have a solid mathematical foundation. We hope that our paper will
attract the attention of the readers to deep algebraic problems which are on the
edge between physico-chemical analysis and theoretical stereochemistry.

1.4. Our aim is to describe the main features of an algorithin — we call it the
symmetrization algorithm — which elaborates a symmetrized molecular model.
During a few years L. Zlatina was elaborating numerous subroutines which were
supposed to become a part of a fulure software package. Unfortunately, the
entire package is still far away from practical exploitation. However, mimerous
experimental use of some subroutines had helped the authors to ontline the main
steps of the algorithm more accurately.

1.5. Our paper can be divided into four parts:

After part 1 the introduction — pari 2 consisting of subsections A, B and
C gives a comprehensive presentation of the theoretical backgronnd of the sym-
metrization algorithm.

In particular, subsections 2A and 2B are devoted to the group theorctical lounda-
tions: permutation groups as automorphism groups of graphs and general point
symmetry groups and the relationships between them. Both kinds of groups are
regarded in a large number of pure theoretical as well as applied works. We were
mainly interested to show the links between these two kinds of gronps describing

1all used notions are explained below
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different aspects (combinatorial and geometric) of the symmetry of a molecule.
In 2C we briefly present the Crippen algorithm. With this, we had less inten-
tion to demonstrate in detail this classical method here than 1o make plausible
that it can yield only an approximative molecular model whenever the considercd
molecule is not very simple.

Part 3 consists of a detailed description of the symmeltrization algorithm. Almost
each step is illustrated with the respective calculations for Aluminium Borohy-
dride Al B3H;, [AGH68] as an example.

Part 4 contains some final remarks and the bibliography.

This paper is written for both chemists and mathematicians. In order to read
it no special mathematical background is necessary; the essential notions are ex-
plained in detail. However, some initial experience with mathematical notions,
in particular, mathematical modelling in chemistry will be certainly helpful.

2 Theoretical background

A. Permutation groups and automorphism groups of graphs

2.1. Graphs and molecules. We understand molecules as consisting of atoms
and bonds (balls and sticks are sometimes a helpful approximation of such idea).
On a more rigorous level this leads to a combinatorial structure which is called
graph. As one example to get a survey in the field of application of graphs to
molecules we cite [KRRTY5).

A (non-directed) graph I' = (V, E') consists of a sel. V of vertices and a set £ of
edges, where an edge e € E is a non-ordered pair ¢ = {v,w} of distinct vertices
v,iw € V. Non-ordered means that we don’t distinguish between {v,w} and
{w,v}. Commonly, vertices are labelled by natural numbers.

A coloured graph I' = (V, E, A, B) is a graph with additional label sets — the
"colours” — A and B, where each vertex v € V is additionally labelled by an
element a € A (symbolically [v,a]) and each edge e = {v,w} € E is labelled by
its colour b € B (we write ¢ = {v,b,w} or vL-w).

2.2. Example AlBzHi,. Let V = {1,2,...,16} be the set of atoms of a
molecule; £ the set of bonds?. Let the colours for the atoms be the names of the
atoms and the colours for the bonds be the bond lengths. Then we can repre-
sent the molecule of AlBsH,; with some additional information by the following
coloured graph:

llere by bonds we mean not necessarily chemical bonds but also some distingnished pairs
of neighbouring atoms
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Generally, to each molecule there can be assigned a coloured graph in this or in
a similar way (e.g. one can agree to label the multiplicity of bonds by colours).
The graph above is called coloured molecular graph of the molecule.

2.3. Groups. Symmelry properties of graphs as well as of geometric figures can
be described by a suilable set of mappings transforming the respective object
into itself. These sets often have the algebraic structure of a group.

An abstract group (G, o) consists of a set G and a binary operation o, such that
the following conditions hold:

1. For all g,h,k € G: go(hok) = (goh)ok (law of associativity)

2. There exists an element id € G such that g oid = id o g = g holds for all
g € G (existence of an identity element)

3. For any element g € (& there exists an element g™ € G such that gog™! =
g~' o g = id holds (existence of inverse elements).

The element g o h, often denoted by gh, is called the produci of g and h.
Examples for groups are the set of integers with the usual addition as operation,
permutation groups (see below, 2.4) and symmetry groups (discussed in detail in
section 2B). In the case of symmetry groups, the sct (7 cousists of motions in the
3- or n-dimensional Euclidean space (rotations, reflections etc.) and the binary
operation o means the consecutive application of two motions. Of course, the
identity is the "motion” which leaves all points of the space unchanged and the
inverse element of a motion is the reverse motion of it.
A subset (" € G of a group (7 is called a subgroup of &, notation ' < G, if
with the operation ¢ (as defined in (' restricted to the elements in (') is also a
group. This hols if and only if for any g, b,k € " also g7 and h o k belong to
«

T.

G’ < and h € G then the subsets G'h, respectively, AG" C (3 are called right,
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respectively, left cosets of G with respect lo G'. The number of right cosets and
the number of lefl cosets of & w.rt. ' are always equal and they are called (if
finite) the indez of G in (.

Let K C (7 be an arbitrary subset of a group (. The set &' of all elements
obtained by repeated forming of products of elements of A and taking the inverses
from ' until no new elements oceur is called the subgroup generated by K|
denoted by 7 = {K) and in such a case K is called & sel of generators for (7.
We stress that here G < G.

Letl ((7y,01) and (G, 02) be two groups. A mapping ¢ from  to (7 is called a
homomorphism, if for all g h € ()

wlgonh) = plg) orp(h).

I. in addition, such a mapping is bijeclive, i.c. a onc-to-one correspondence
onto, then it is called an isomorphism and the groups (G, 01) and (G, 0p) are
isomorphic, notation (1, 01) = ((73,02). Two isomorphic groups are "the same”
up to the names of the elements.

Il there is an isomorphism from (7 inlo a subgroup of (7, then this isomorphism
is called an embedding of ((#;.01) into (G5, 02).

2.4. Permutations. A permutation g on a sct V' is a one-to-one mapping of
V' onto itself, i.e. g maps each element » € V onto an element ©? of V and for
any element w there is exactly one element v which is mapped via g onto w.
Note, that we use here the "exponential” notation ©? for the image of v instead
of traditional g(v). The inverse permutation g=' of a permutation g maps ¥ onto
v. A fized point of a permutation g is an element » € V' which is mapped onto
itself by g vf = v,

The product g o b, for short gh, of two permutations ¢ and A is the consecutive
application of the mappings g and h, i.e. 09" := (v9)%,

A eyele ¢ = (vwyvs ... v,) (where the v, are distinct elements of V) is the per-
mutation which maps vy to vy, vz to v, ..., v, to v, and leaves all elements of
V' not occuring in ¢ unchanged. A permutation g can be denoted by its cycle
represcntation, 1.e. a product g = crep ... ¢ of eycles ¢y, ey, ..., &, where different
cycles involve disjoint sets of elements.

If (7 is a set of permutations on a set V' and the product of two permutations from
(¢ as well as the inverse permutation of any permutation from ¢ belong again to
G, then G satisfies the conditions 1.-3. for groups and we call the pair (G, V) a
permutation group on V. Let (G, V) be a permutation group and v € V. The set
v = {v¢ | ¢ € 7} of all images of » under the permutations of (7 is called the
orbil of v under G.

The k-orbit of a k-tuple of elements of V' is defined analogously:

(v1,v2.. .. Jup)C o= {(v],v3,...,v]) |g € G}.
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2.5. Automorphisms of graphs. Let I' = (V, E. A, B) be a coloured graph.
An cutomorphism g of T is a permutation of the vertices V "respecting” all edges
and all colours: More precisely, the image v? of a vertex v under g must have
the same colour as v and if there is an edge ¢ = {v, w} then {v7, w?} must be an
edge with the same colour as e, i.e.

[v,a] mapsio [v?,a] and v——uw maps to LA

The set of all automorphisms of a coloured graph I' forms a permutation group
which is called the auiomorphism group of the graph, denoted by Aut (I).

2.6. Example AlB3yH,, continued. Let

g = (246)(357)(8910)(11 13 15)(121416), g, = (23) and g5 = (1112).

These are permutations of the vertices of I' which are in fact antomorphisms of I'.
The sct of fixed points of g, and g,, respectively, are {1} and {1,4,5,...,16},
respectively.

We have g,g2 = (246357)(8910)(11 1315)(121416) and

g = (264)(375)(8109)(111513)(1216 14).

The group generated by g, and g3 is G = (g2, g3} = {id, g2, 93, g2ga} = {id, (23),
(1112), (23)(1112)} and G' = {2d, (23)(1112)} is a subgroup of G.

Let Ro, Ry, respectively, be the rotation about 0,7, respectively, around an arhi-
trary axis in the space. Then Ry, Ry form a group R isomorphic to G'. In fact
we have the onc-to-one correspondence ki : id = Ry, (23)(1112) ~ Ry. By the
same correspondence, R can be embedded into G.

The orbits of G are 26 = 3% = {2,3}, 119 = 12 = {11,12} and v% = {v} for
all other v € V. An example of a 2-orbit is given by (6,2)% = {(6,2), (6,3)}.

[t turns out that altogether the molecular graph of AlB;Hi; has 384 automor-
phisms. A set generating this group is

{ (89)(24)(35)(1113)(1214), (810)(26)(37)(1115)(1216), (23), (1112) }.

We want to state here explicitely as a warning: most of such automorphisms do
not need to correspond to a geometrical symmetry.

B. Symmetry groups

Our notations for groups, group elements, their multiplication, mappings etc. in
this subsection follows as far as it seemed us possible the standard book about
symmetry groups [Hah83] and that’s why sometimes it deviates from the usual
algebraic notation introduced in the preceeding subsection 2A. We think thai
we should not ignore the language of crystallographers who we expect among
the audience of our paper and who are mostly occupied with this kind of groups
and succeeded — often after long discussions — in creating a well recognized
common system of notions and notations. So, we decided to give the general
group theoretical facts (in 2A) in an algebraic, the special symmetry group facts
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(in 2B) in a crystallographic language. In the last item 2.12 of 2B symmetry
groups will be cousidered as permutation groups and notions as well as notations
of both approaches are compared.

2.7. The Euclidean space. Crystals and molecules are objects in the three-
dimensional (for short also 3D) space we live in. A general model for the mathe-
matical treatment of this space is the Fuclidean space R™ over the lield R of real
numbers represented here by

R = {(a1,. .., an)la: € R}.
The cases n = 1, 2, 3 lead to models seeming to be most closely connected with
nature; but in some cases, e.g. with certain kinds of aperiodic crystal structures,

also other natural numbers n > 3 make it possible to construct even more useful
models.

In our paper we shall consider molecular models in R®, except in the Crippen
algorithim where the molecule is originally assumed to live in R™
We will interprete the elements (ay,...,q,) € R" somctimes as points A, some-
times as vectors a := OA, where O := (0,...,0) is the n-dimensional zero vector
and write them

ay

as rows (a1,...,a,) or as columns : = (ai,.. .A,a,.)T.
an

In R™ (considered as a metric vector space over R) we have the following opera-
tions:

(i) addition of any two vectors a and b:

(als"-aaﬂ)+(b11"')bﬂ) = (ﬂl +bla"-1an+bn))

(i1) multiplication of any vector by any scalar r € R:
r(ay,...,a,) = (ray,...,ray),
in particular we have for the opposite vector
—(@1y- sy @n) = (=15 .y =da)
and
the scalar product of any two vectors:

(a, b) = Glb| Fo it CIﬂb,.,.

(iii

In R™ metric relaitons are defined as follows:
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s The distance between two points A = (ay,...,0,) and B = (b, ...,b,)
ec_luals the length of the vector b — a, which also will be denoted by
AB:=b-a,

|4B] = b~ a| = /lay = B2l - F (an = 5a)?
and
e the angle Z(A, B,C) between BA and BU is obtained from
(BA,BC)  (a—b,c—b)

cos £(A, B,C) = cos #(BA, BC) = —= o :
(4,B,0) = o ABABO) = T BOl ~ Wl o =b

2.8, Motions. A bijective mapping®
W: R"SR*: XX,
whereby all distances are left invariant, is called an isometry, isometric mapping,

symmetry operation or motion of R™
Any motion W may by represented as

W(X)=X=WX + W,
where X = (z1,...,2.)7, Wy = (wy,...,w.)T € R" and W = (wy;) is an (n x n)-

matrix consisting of elements w;; € R. Then we write W = (W, W,).
For any isometry W = (W, W,) we have

det(W) =1 or —1.

A point X € R" is called a fired point of the mapping W if W(X) = X. The
origin O is a fixed point if and only if W; = O.

The symmetry operations describing a molecule’s symmetry under consideration
in this paper are motions of R® with at least one fixed point. Let be I the (3 x 3)-
unit matrix and —I the (3 x 3)-matrix obtained from I by multiplication of all
elements with —1. The following kinds of motions with fixed point occur in R
a) Proper motions, i.e. motions with det(W') = 1. They are rotations.

b) Improper motions, i.e. motions with del(W) = —1. They are called inversions
if W = —I; reflections if W? = I and W # —I; and rotoinversions in all other
cases.

Let be k a natural number. A rotation, respectively, rotoinversion about rotation
angle 27 /k, is called a k-fold rotation (then W* = I), respectively. a k-fold
rotoinversion (then W¥ = I for even k and W* = —1I for odd k).

2.9. Symmetry elements. For the visnalization of (geometrical) symmetry
within the Euclidean space the concept of symmelry elements is useful. In first
approximation the symmetry element of & symmetry operation with fixed point is

3the arrow — describes the mapping elementwise, i.e. X = W(X)



the set of its fixed points, together with a geometric interpretation of the motion.
This statement is an exact definition if the motion is a k-fold rotation, a reflection
or an inversion, respectively. Then the corresponding symmetry element is cqual
1o a k-fold rotation azis, a mirror planc or an inversion center, respectively.

A peculiar situation exists for k-fold rotoinversions (except when & = 1 where
we have the inversion 1 = ¢, and k = 2 which gives the reflection 2 = m = o
for symbols ¢f. explanation in Table 2.9). A k-fold rotoinversion is the product
of a k-fold rotation and an inversion. Its symmetry element consists of two com-
ponents: the inversion point and the k-fold rotation axis passing through the
inversion point. Both together define the k-fold rotoinversion azis as the corre-
sponding symmetry element. Its single fixed point is the inversion center (k # 2).
We remark that k-fold rotoinversions (b = 1,2....) may also be considered as
h-fold rotoreflections, i.e. as a product of a rotation about a A-fold rotation axis
and a reflection on a plane perpendicular to it, where A = k for k = AN; h = k/2
for k = 4N + 2, and h = 2k for k = 2N + 1. The corresponding symmetry
element of the rotoreflection is a rotoreflection azxis consisting of a h-fold rotation
axis and a perpendicular to it mirror plane. The symmetry group concept of
HERMANN and MAUGUIN bases on rotoinversions, that of SCHOENFLIES bases
on rotoreflections®, [Hah83).

For symmetry groups to be considered in the next items 2.10, 2.11 and sym-
metry elements varions notations exist and are used for practical, historical or
private reasons®. Most common are the International symbols — based on the
full HERMANN-MAUGUIN symbols -~ and the SCHOENFLIES symbols for point.
groups. We introduce them both, as given in [Hah83]. Symmetry elements will
also be denoted twice: by International symbols [Hah83] and symbols introduced
in [Flu80] (close to the Schoenflies group symbols).

In TABLE 2.9 there are listed the symmetry elements in R? corresponding to
symmetry operations with fixed points. Fach input in the table consists of a
general description of the kind of the symmetry element (above) with all symbols
and an oriented symmetry element, i.e. where the set of its points is indicated
related to a Cartesian coordinate system (0, x,y,z) (below).

*If the only symmetry operations under consideration are k-fold rotations and rotoreflections
(k= 1,2,...) then the symmetry element of a motion can be defined as the set of points in
special position (cf. 2.12) w.r.t. this motion together with an indication where these points are
mapped to by this motion.

5 One would rather use a colleague’s toothbrush then her / his notations.” — Orally infor-
mation from H. Wondratschek.
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General International | Symbol Interpretation and

symbal / according points of the

oriented to [Flug0) symmetry element

k Ck k-fold rotation axis,

k=12, rotation angle ¢ = 2w /k

oriented:

krzg,:yu,rzo {(IIu,l‘yu, .'an) l RS R}

k k-fold rotoinversion axis,
Sk (k=4N) product of rotation about

Sak (k= 2N +1) | angle ¢ = 27 /k and inversion
S; (k =4N +2) | with common fixed point

1 1 inversion center
oriented:
kmo.zyo.rzo: (0,0,0) {($$011y07120) |z € R}

inversion point: (0,0,0)

m (=2) o mirror plane

oriented:

Mazydyzz 2y +3v2,22 +uzz {(za1 + yza2, 200 + yyo, 721 + y22)|
z,y € R}

mrvU Th {(x,y,[)) lI:ye R}

MOy Ty {(va'i 2) \ Y,z € R}

TABLE 2.9. Symmetry elements with fixed points in R®.
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We give some concrele symmeltry clements, with mentioned orientation related
to a Cartesian coordinate system, i.e. the set of points of the symmetry element
and the corresponding transformation matirix W (the translation part W, is O):

cos sing 0
Koo {(0,0,2)|]z € R} —sing cose 0
0 0 1

2040 {(0,y,0)|z € R}

sing —cosep 0

) —cosg —sing 0
Kooz, (0,0,0) {(0,0,2)|z € R}

0 0 -1

Mzy,0 {(z:ywo]lzay € IR}

-1 0 0
Tooo {(0,0,0)} ( 0 -1 0)
0 0 -1

-1 00
Moy,z {(01 Y "')Iyr z€ R} 010
001
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2.10. Symmetry groups. Let W = (W, W,), W' = (W', W/). If the composi-
tion W - W’ of two motions W and W'

(W-WI(X) := WW(X)) = WW'(X) + W(W)) + W,

is taken as multiplication, then all motions of R™ form a group B,

A figure I is a set of points of R™. A symmetry operation of F' is a motion W
which maps this figure onto itself, that is W(F) = F. The set of all symmetry
operations of F forms a subgroup of B and is called the symmetry group of F.
The set of all motions of R™ with fixed peint O also forms a group (the symmetry
group of a single fixed point).

Various classifications of symmetry groups are useful. Two symmetry groups @,
and ®; belong to the same iype if they are conjugated in B, i.e. il

B, = W6, W, for some W ¢ B.

2.11. General point groups. A (general) point group of R™ is a symmetry
group, where all its elements (symmetry operations) have at least one fixed point
0 € R™ in commmon.

Here we will consider point groups of finite order. This means in particular, that
the rotations occuring in these point groups are only rotations about angles 27 /k,
where k is an integer.

We remark that the notion of point groups is often identified with erystallographic
point groups. The latter are only those, which transform an r-dimensional (in-
finite) lattice into itself. This leads to certain restrictions to possible rotation
angles 2 /k, i.e. to k: in R? and R? only rotations about 1-, 2, 3-, 4- and 6-fold
axes are crystallographically possible.

In the 2D space R? all finite point groups which can occur are the symmetry
groups of regular k-gons and their subgroups.

In the 3D space R® all finite point symmetry groups which can occur are the
symmetry groups of k-gonal prisms, & = 1,2,..., of the five Platonian solids
tetrahedron, cube, octahedron, dodecahedron, icosahedron and their subgroups
(where cube and octahedron have the same symmetry group type and so do do-
decahedron and icosahedron) [Wey52].

In TABLE 2.11, following on the next page, all types of finite general point groups
in R? are indicated each with a set of generators in symbels according to TA-
BLE 2.9 and a concrete isomorphic permutation group.
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General Int.
symboaol

Schoenflies
symbol

Group
order

Symmetry elements of generating
symmetry operations

Isomorphic
perm. group

4N-gonal system (single k-fold symmetry axis with k = 4V)

k C k | kooz Zk

k Sk k | koos Z

kfm Crn 2k | kooz, Mayo Zk X S
k22 Dy 2k | kooz, 2200, 22 cos(£),2in(£).2 Dy
{”"m Civ 2k ’fOOzv Mz0zy My cos(£)asin(L).z Dy,
k2m led 2k kODu T30z s 2::05(%),msin(?).z Dk
k/mmm l)kh 4k kgnz, Magy0y Moz, m:uoﬁ(%)‘rsin(ﬁ),z Dk X 52
(2N + 1)-gonal system (single k-fold symmetry axis with k = 2N + 1)

k [ k | koo Zy
k=kxl1 Chi 2k Eou, Zy x 5,
k2 Dy 2k | kooz, 2200 Dy

km Chy 2k | koo, M0: Dy

km Dy, 4k | kooz, Mayo, Mzox Dy x 8
(4N + 2)-gonal system (single k-fold symmetry axis with k = 4N + 2)

k C k | Kooz Zi

E C,_%kh k Egaz Z;_: X 5’2
2=m C‘, 2 Myyo Sz

k/m Crn 2k | Kooz, Mayo Zi xSy
k22 Dy 2k | koozs 2500, 2z cos( )0 sin(£),2 Dy
kmm e 2k | Koozs M0z, My cos(£),z5in(£).2 Dy
k2m D%H 2k | kooz, mao:, 22 cos(£),z sin(£),2 Dy
k/7”mm Din 4k | kooz, May0, M0z, r”z-r:os(f).::sin(ﬁﬁ),z Dy % 5,
Cubic system

23 T 12 2.::7:, 300x A4
2/‘!7)3 Th 24 200;, g:,_-z Ad. x 52
432 (0] 24 | 4002, 3zzx 54

‘13111. T,,' 24 3002: 4zﬁ,ﬂ,.l‘ S"
4/m32/m | Oy 48 | 4oo., 3izx Six S,
Icosahedral system

235 ! 60 | 500z, 32 4in(37.380),0,2 cos(37.380) As
2/m35 I 120 | Sovz, 3 sin(37.389),0,5 cos(37.38°) As x Sy

TABLE 2.11. The finite general point symmetry groups in R3.
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The symbols® for concrete permutation groups in this table denote: Z, — the
cyclic group, Dy~ the dihedral group (of order 2k), $; — the full symmetric
group, Ay — the alternating group, each acting on k elements; x denotes the di-
rect product. We only mention these permutation groups here. A more detailed
understanding of the permutation group symbols is not obligatory for further
considerations and their explanation would go beyond the scope of our paper
(for details cf. e.g. [Wie64] or [KPR8S|). We remark that point groups belonging
to different types may be isomorphic (e.g. 422 = D4 (Dy is here SCHOENFLIES
symbol) and 4mm = Cj, are both isomorphic to the permutation group Dy).
The classification of symmetry groups into types is a finer one than that by iso-
morphisms: two isomorphic groups may be of different types.

2.12. Symmetry groups and permutation groups. Any symmetry group
® may be considered as permutation group on the points of R*. This, however,
is a set of cardinality of the continuum.

The orbit A%, as introduced in 2.4, of a point A € R™ under the action of & is
the set

A® = (BB R" 3G € ®: AS = B}.

We wrote A® instead of G(A) in order to emphasize that here the motion G is
considered as a permutation.

Points belonging to the same orbit under the action of a symmetry group are said
by crystallographers to have equivalent positions. One can restrict the action of
a point symmetry group only to some (finitely many) of its orbits. Then we have
a finite permutation group on a finite set of points. This will be done in further
considerations. The greatest subgroup ®,4 < & with the property

4% = {4},

is what algebraists call the stabilizer and crystallographers the site symmetry of
point A. If 4 =1 =, (C is here SCHOENFLIES symbol), then the point A is
said to be in general position, otherwise in a special position.

For point groups, the notion mulftiplicity of the corresponding site symmetry used
in crystallographic symmetry group tables ([Hah83]) equals the length |A®| of the
orbit A®. Tt is equal to the index |® : & 4| (LAGRANGE’s theorem).The point A
is in general position if and only if |A%] = |&|.

We remark, that only certain subgroups of a symmetry group acting in R™ can
figurate as site symmetry (stabilizer) of a point A € R". This becomes obvious
by considering in some cyclic symmetry groups the corresponding symmetry el-
ements and the possible positions of points of R

E‘Warning 11 As we know from our experience with forcign languages "false friends” can
occur. This 1s what happens with Schoenflies symbol Si, denoting a cyclic group of order
k = 4N and the permutation group symbol S for the full symmetric permutation group of
order k! on a set ol & points — of course, they are non-isomorphic.
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Let (W) be the group generated by a k-fold rotation Wy, £ > 2. Then

JAWK)| = 1, if A lies on the axis, i.e. (W), = (W;) or

AWK = k, if A does not lie on the axis, i.e. A lies in general position.
With a k-fold rotoinversion Wy the situation is a little bit more delicate:

| AW < 1, if A is the fixed point of the rotoinversion or

AWK | = 2, if A lies on the axis but is not the fixed point or

IA(WU\ = I(WEH, if k=4N 4+ 2 and A lies not on the inversion
point but on a mirror plane perpendicular to the
axes through the inversion point or

AWK | = [(Wy)|, if A lies in general position.

Finally, we summarize the most important pairs of occasions of terms.

Dictionary.
Crystallographers: Algebraists:
A® set of equivalent positions  orbit
| A% number of equivalent orbit length
positions, multiplicity”
By site symmetry of A stabilizer of A
By = A lies in general position A has a trivial stabilizer # &
Ba#1 A lies in a special position A has a non-trivial stabilizer

or is a fixed point

2.13. Automorphisms of the molecular graph and symmetry opera-
tions. The symmetrization algorithm presented in section 3 will yield an allo-
cation of the atoms in the 3D space such that the given symmetry is satisfied,
i.e. the group of symmetry operations of the desired figure belongs to a given
type &.

We consider such allocation as a mapping ¢ which assigns to each alom (e.g. each
vertex of the labelled molecular graph I') a triple of coordinates:

@: V() — R

Of course, with this mapping we define an allocation not only for the atoms but
also for the molecule, hence we assign to the labelled molecular graph T' a figure
F in the space (and we use for this assignment also the sign ¢):

F=g(I).

For computing such a ¢ we use the relations between the symmetry group & of
the molecule and the automorphism group Aut (T') of the molecular graph.

Let F be a figure corresponding to the molecule.

"This notion indicates the orbit length only for point groups. In general, the multiplicity
indicates the number of equivalent positions within the unit cell.
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Any motion W belonging to the symmetry group &;. can be considered as a
permutation on the set V' of atoms of the molecule. We denote this permutation
by w and the subset of Aut (I') of all permutations assigned in this way to the
elements of Gp by GF.

The correspondence between the elements of &5 and those of G should be one-
to-one, but this is the case necessarily only for non-planar molecules: In the case
of planar molecules it may happen w = w’ in spite of W # W', and especially, it
is possible that w = id for some W # id (c.g. W is the reflection with respect to
the plane the molecule lies in).

Moreover, any element of G permutes the atoms of the molecule preserving the
names of the atoms and the bonds with their length and multiplicity etc. Hence,
it is an automorphism of the labelled molecular graph: w € Aut (I').

However, not every automorphism of the graph must correspond to a symmetry
operation in R?, i.e. G is a subgroup of Aut ([') and

we can stale:

The group Gr is @ homomorphic image of & and it is a subgroup of Aut (I):
Gy — G < Aut (L).

In the case of non-planar molecules, G is isomorphic to &p and it is a subgroup
of Aut (I):
Gr = Gp < Aut(I').

Let now be given a type & of the symmetry group Bp and an automorphism
group Aut (I'), but let the coordinates of the figure I’ of the molecule in the k*
be unknown. We restrict our attention to the case of non-planar molecules.

We want to know, how the symmetry operations can act on the atoms of the
molecule. I'rom the type @& and the table in 2.11 we know a permutalion group
@ isomorphic to Bp. Let @ : G — Aut (I') be a mapping assigning an automor-
phism of Aut (I') to each element of G. Generally, the mapping ® is not uniquely
determined. In order to define it, it is sufficient to assign an automorphism to
each generator of .

Some necessary conditions for such an assignment are easy to see, for instance,
if an element of G corresponds to a symmetry operation W with W* = id, then
one must assign to it a permutation w € Aut (') with w* = id.

In principle, the problem of enumeration of all possible embeddings of the sym-
metry group G into the automorphism group Aut (I') may be solved on the base
of some standard group-theoretical techniques. Here the use of modern tools of
computer algebra, for instance the computer program system GAP (see [Sch95]),
is recommended. In general, the group embedding ® : &z — Aut (I') does not
guarantee that the image 71 of Br in Aut (I') is really realizable by a 31 model
of the molecule. Additional conditions must be satified.

We mention one possibility: Given a faithful permutation representation, say (S, M).
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of Bp on a finite set M C R* (which is invariant under the action of S), then there
must exist a “faithful action homomorphism” from G into (S, M), that means there
is a mapping h : ¥V — M of the vertex set V (not necessarily injective) such that

h(v®@)) = h(v)?, forallge SandforallveV

{of course, the action of g on h(v) is the action in (S, M)).

2.14. Example AlB3H;,; continued. The symmetry group of AlB3H,, is
62m = Day, of order 12 generated by 300z, Miryo, Moy.. One embedding & :
&p — Aut (') is given by the following assignment:

300 =+ (246)(357)(8910)(111315)(121416)
Mo~ (23)(45)(67)
moye = (24)(35)(6 T)(89)(1114)(1213)(15 16)

There exist a reasonably large number of possible assignments. Nevertheless
only a small amount of them leads to essentially different embeddings of &y
into Aut (I'). Some of the possible embeddings may be omitted by the following
elementary geometrical reasons : In some cases all four atoms of a component

Al <E B are stable under reflection on a horizontal (m., s = ¢1) and on a
vertical mirror plane (m.p. = o,); hence, they would lie in one line, which is
impossible. In other cases there are pairs of atoms switched by a reflection on
a horizontal mirror plane as well as by a reflection on a vertical mirror plane,
what is again impossible. Thus finally only few possible embeddings are left to
examine. We deliberately avoid here to discuss concrete details of such a group-
theoretical search (if it is arranged via the use of a suitable computer package,
a huge number of possibilities can be managed, intermediate details reducing
the cases as early as possible are not significant). Here we restrict ourselves to
the embedding given above which leads to the real model. The orbits of atoms
w.r.t. this embedding are: {1}, {2,3,4,5,6,7}, {8,9,10}, {11,12,13,14,15,16}.

C. The Crippen algorithm.

2.15. The aim of Crippen’s algorithm (cf. [Cri77], [Cri78], [Cri81]) is to con-
struct a model CM of the molecule given by Cartesian coordinates in R?® using
all interatomic distances as input data. Let n be the number of atoms in the
molecule. The atoms are considerd as n points Ay,..., A, in an n-dimensional
space R™. The CM is an optimal projection of these n points in n dimensions
into a three dimensional subspace, i.c. a projection where the distances between
atoms are most similar to the distances in R™. The Crippen algorithm passes the
following steps 2.16 - 2.19.
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2.16. Collection of initial data. The input data are the n x n values d;;
of interatomic distances. Some of the d;; are obtained from experiments. The
remaining d;; are searched in sufficient large intervals [l;, %], where lower and
upper bounderies satisfy the triangle inequalities:

by 2 b — Ly and gy < uge — ugy.
Then the remaining d;; € [L;;,u;;] are chosen with the help of a random number

generator taking into account correlations between atom distances (again the
triangle inequalities).

2.17. Caleulation of n-dimensional atomic coordinates. Let O € R" he
the geometrical center of the molecule. Its distance dy; = \074,| from point
(atom) A; can be calculated as the difference between the geometrical means of
the distances from point A; and all distances:

d2, = %Zd}l = ZI?Zdek‘
j=1 k=1 j=1
Let us denote the searched coordinates of point A; by
Vi = (vity ..., i) 1= OA; with  |vi| = dy;. (N
Then
(vi,v3) = doida; cos Z(A;, O, Aj) = (di; + df, — dF))/2

i)
(via the cosine theorem).
Let

vli T Ul'n
V= : : and G = (g;;) := VVT, (2)

Uni "C Unn
where V7' is the transpose of the matrix V and thus g,; = (vi,v;). The eigen-
values A, and corresponding eigenvectors wy of the matrix G can be determined

e.g. by the partial searching method (cf. [FF63]). Moreover, the eigenvectors
can be assumed to be found so that they are orthonormal, i.e.

(Wi, wy) = by, (3)

where &;; is KRONECKER’s symbol (1.e. i = 1 and 6y = 0 1f k # ). Let W be
the matrix which columns equal the eigenvectors of the matrix G

Wy v Wi Wy

Wny - Wan Wrk

and let
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Vi
Li= : H and A :=LL(=LL").
0 - VA,
Then
G =WAWT = WLL"WT = WL(WL)¥
and according to (2) and (3) a solution for the desired n-dimensional coordinates
satisfying (1) is determined by

V=WL, ie. U{_,‘:?.UU\JJ\J. (4)
2.18. Determination of the 3D projection space. The eigenvalues Ag, where
k=1,...,n, are a measure of the correlation of deviations of atoms’ k-th coor-

dinates from 0. These eigenvalues are non-negative, because G is a symmetric
matrix and positive semi definite (it can be shown, that its mam minors are > 0;
cf. [Ant95], [VoeT4]). The coordinate axes corresponding to the threc greatest
eigenvalues define the desired 3D subspace R?, allowing an optimal 3D projection
of the molecule. Be x{” = (:r:(?), T, ,'cfg)), 1 = 1,...,n, the coordinates of the
n projected atoms cons]dered as the first approximation of the 3D coordinates

searced for the molecule.

2.19. Optimization of calculated atomic coordinates. Generally, the x(")

wonld not yield sufficiently correct interatomic distances according to the given
data. The larger the number n of participating atoms is the less reliable are
calculated data. The deviations of atomic distances ry; of the molecule’s three
dimensional projection from the input data di; € [kj,uy;] (for the exactly given
near interatomic distances we have d;; = I;; = u;;) are decreased by minimization
of the function Fry of squares deviation:

Fry(xyy. ., %) i= Z ( u'z Pt Z ("?j*l?;')z, (5)

1€:< €0 I1<icign
Ty >y fi<ly

3 1/2
where r; 1= |:Z:(x,u€ - :e:j;;)2

k=1

The function Fpy —- at least near its points of minima - is a smooth function
and minimization methods described in [GMW81] can be applied.

The result are n x 3 values z;; 1 =1,...,n; k = 1,2, 3; representing the coordi-
nates of the n atoms in the 3D space and describing a molecular model, which in
the sequel will be called the Crippen model of the molecule and denoted by CM.

2.20. A program elaborated in the All Russian Research Institut of Organic
Synthesis with an implementation of the Crippen algorithm was tested with rep-
resentatives of different structure classes, mainly polycyclic compounds. Data
were obtained from literature.
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For some simple structures satisfactory results were found without optimization:
it was just Fw{xgm,. 55 ,xff))) 22 107°. This was the case with skeletons (models
ignoring chemically bonded H-atoms) of molecules forming a tetrahedron, cube,
5-ring (cyclopentane), prism with triangle basis plane. If the hydrogene atoms are
taken into account the number of atoms enlarges, of course. and the optimization
step can’t be neglected. Such molecules are represented in [ZE92)].

2.21. The Crippen algorithm does not take into account the symmetry of the
molecule at all. As usual, the resulting CM is not invariant with respect to the
prescribed symmetry group type of the molecule, i.e. this model is not exact. The
sources of unexactness of the Crippen algorithm are

e incomplete input data (most atom distances are chosen randomly respecting
certain limitations),

* projecting the atomic coordinates from n dimensions into three, there is
lost. a reasonable part of information,

» occurence of rounded values via the implementation of linear algebra algo-
rithms for the calculation of eigenvalues and eigenvectors.

Thus, it yields only an approximative model the less satisfying the larger the
number of atoms.

3 The symmetrization algorithm
3.1. Input data. The following information about the molecule — available

from physico-chemical experiments (spectroscopy) -— serves as input data of the
symmetrization algorithm:

Number n of atoms I s R

Kinds of atoms B wen Sy

[3] Bonds Biz wiw  big
: Poobie {01}
bni . bnn

Multiple my ... my, my; =0, ifby; =0,

bonds : Pomy; €{1,2,3}, ifb; =1

Mny Mnn

[5] Bond di; = |AA],

lengths if b;; =1
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Valence wijr = £(A;, Ajy Ar),
angles ifb;; =bj =1

Type of (U] (i.e. without orientation
symmetry group of symmetry elements

in the space)

‘Wanted: A 3D model of the molecule satisfying all these data. The symmetriza-
tion algorithm brings together two models of the molecule and the symmetry
group each reflecting only some of the points m - :

1. the molecular graph T — resulting from [L], and [4],
II. a model living in &3, obtained by Crippen’s algorithm — using , , IEL

11I. the symmetry group type — point .

3.2. Example AlB3H,; continued. The input data m, , and can be
obtained from the labelled molecular graph (2.2).
The bond lengths |5 | are:
dl,z = dl.;x - dl,l = dl.n = dI.G = dl,? = 1~801A»
ﬂ'g_s = d3,8 — dgig = ds_g = dG.lU = d-r_w = 1.283A,
ds11 = dg 12 = do 13 = do 14 = dio1s = dioe = 1.196A.
The valence angles @ are:
Wy13 = Wy,15 = We, 1,7~ 73-4°a
W8 = Wy 49 = W60 = 56.3°,
Wasa1 = W12 = W3k 1l = Wag,12 = We9,13 = Wa914 =
Ws59,13 = W5 9,14 = We,10,15 = We 10,16 = W7 10,15 = W7,10,16 = 106.7°
wiy,g,12 = Wiag,14 = Wis 1016 = 116.2°.
The type of symmetry group |7is 62m = Dy, (group of order 12).

The symmetrization algorithm passes through the following steps:

3.3. Step 1: Determination of the graph automorphism group. The
molecular graph I represents all atoms and all bonds of the investigated molecule.
1t is a graph, generally, with labelled vertices (vertex labels correspond to kinds
of atoms) and labelled edges (edge labels represent multiplicities of bonds). Its
automorphism group Aut (I') can be determined by hand or by computer using
one of the known algorithms (e.g. [Hof82]).

In some cases it is easier to consider not the whole graph I' but only its "skele-
ton” I neglegting vertices with valency 1, i.e. the ordinarily chemically bonded
hydrogene atoms (however such simplification will not allow to get a reasonable
model for the whole molecule).
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3.4. Step 2: Construction of the model CM using Crippen’s algo-
rithm. The input data are the available interatomic distances for the atoms
of the molecule:

e d; =0foralli=1,...,n, where n is the number of atoms (3.1 m},
e d;; for all bonded atoms A; and A; (3.1 )1

o dy for atoms A; and Ay, i.e. belonging to a chain A; — A; — A; calculated
from d;;, d;;, and valence angle w;; (3.1 [6]).

Distances between all other, i.e. farther remote atoms are estimated (cf. 2.16).
Then the Crippen algorithm works as described in 2C. The result are three di-
mensional coordinates X;, ¢ = 1,...,n, of the n atoms describing the Crippen
model CM of the molecule. The molecule’s symmetry is ignored and generally
not satisfyed by the CM.

3.5. Step 3: Embedding of the symmetry group into the graph auto-
morphism group. For the next steps we need to know how the generators of
the symmetry group permute the atoms, i.e. we need the assignment @ of au-
tomorphisms to the generators, ¢f. 2.13. This assignment yields a partition of
the atom set into orbits w.r.t. the symmetry group and the determination of the
site symmetries (stabilizers) of the atoms. In 2.13 we explained how to find the
agsignments satis{ying conditions from the group theoretical point of view. But
generally, this yields a huge number of possible assignments to be considered in
the next steps. It can be decreased drastically taking into account some chemical
and geometrical facts (cf. Example 2.14).

It is also possible to use the results from the Crippen algorithm for deciding which
automorphism belongs to which symmetry group element, but this is dangerous
because the Crippen algorithm can yield a spatial model deviating from the re-
quired syminetry.

For each of the remaining assignments -— possibly more than one — we have
to try to build up a space model satisfying the required symmetry and also the
geometrical requirements passing steps 4.-7.

Once an automorphism is assigned to a generator of the symmetry group the
orbits of this single automorphism are determined (to be more exact, the or-
bits of the subgroup generated by this automorphism): these are the cycles in
the cycle representation of the automorphism. It is easy now to determine the
decomposition of the set V of atoms into the orbits of the whole group Gp.

3.6. Step 4: Orient the Crippen model and the symmetry elements
in the space. The atomic coordinates obtained by Crippen’s method are used
as initial approximation of the symmetrization algorithm. We want to place the
symmetry elements in the space, so that the Crippen model is "as symmetric as
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possible”™ w.r.t. the symmetry elements. A rotation axis of highest order will be
called Lthe main axis, all other rotation or rotoinversion axes are called side axes.
‘T'hen we orient the model by an isometric transformation in such a way that the
symmetry elements are in the following canonical positions:

a) the k-fold main axis coincides with the z-axis : kyo.,

b) a mirror plane oy perpendicular to the main axis coincides with the plane
{(z,4,0)|z,y € R}: 0
and one of mirror planes o, containing the main axis coincides with the
plane {(0,y, z)|y,z € R}: moye,

c) a side axis €, coincides with the y-axis : 2,0 (if this does not contradict
b))
d) one of the fixed points coincides with the origin O,

e) the side axes Sy or S5 of cubic groups are located at {(zv/2,0,z)|z € R} :
41\/5,0.1‘ or 3:\/5.0,::'

Kuowing the orbits of the atoms w.r.t. G place the symmetry elements of the
generators as follows:

Il there is o main axis but an inversion center (i.e. in the case of point group
1= C;) or a mirror plane (m = C,), respectively, (then the orbits are actually
single atoms or pairs of atoms) we approximate the center points of the orbits by
a point or plane, respectively, using the least squares’ method and transform it
isometrically into canonical position.

If there is a main axis we proceed as follows:

e For the placement of the main axis, we calculate by the least squares’
method the center points of the orbits assigned in step 3 to the main axis.
Then we approximate again by the least squares’ method these points by a
line. In cases when at least two atoms are known to lie in the axis we can
also take an approximation line for this points. An isometric transformation
brings this axis in canonical position.

If there is a unique fixed point of the symmetry group we approximate
its coordinates by (0,0,z) where z is the arithmetic average of the third
coordinates of all atoms of the molecule. Alternatively, instead of all atoms
we can use those atoms which have the same third coordinate as the fixed
point, i.e. the fixed points of 1 = 7, m = a4 etc. A shift parallel to the
main axis brings this point into the origin.

¢ It remains to rotate the model around the main axis. To do this we choose
a point not belonging to the main axis which is a point of



the side axis 2 = (' axis or
— the vertical mirror plane m = o, plane or
— the side axis 3 = S or

— the side axis 3 = €5 or the side axis 4 = ;.

If there is more than one possibility we can use an arbitrary one. Only in
the case of point group 43m = Tj; we have to use a fixed point of a 3 = C4
axis, if there is one. Finally, we rotate the model around the main axis so
that the choosen point lies in the plane {(0,y, 2)|y, z € B} (in the first case)
or in the plane {(z,0,z)]z,z € R}. (in the other three cases).

3.7. Example AlB3H,; continued. We orient the CM as follows.

Placing the main axis: The orbits corresponding to the main axis 3 = Cy are:
{1}, {2,4,6}, {3,5,7}, {8,9,10}, {11,13,15}, {12,14,16}.

Placing the unique fixed point: The shortest orbit consists only of the Al-atom,
hence we take its third coordinate from CM for =.

Rotate around the main axis: The atom 10 is a fixed point of m = &,, hence we
finally rotate the model so that this atom lies in the in the yz-planc.

3.8. Step 5: Symmetrization of the model. The model obtained up to
now {reoriented CM), in general does not satisfy the required symmetry. In this
step we construct a new model such that its symmetry group coincides with the
prescribed symmetry. For this, we select a suitable subset A C V representing
all orbits of atoms w.r.t. iy, project each a € A into the symmeliry element(s)
(determined in step 3) corresponding to its sitc symmetry (stabilizer) &, < &p.
Applying & to the clements of A we obtain new atomic coordinates for all atoms
taking into account .

From each of the orbits we choose one representative as follows:

Choose an arbitrary atom as representative of a shortest orbit. Tor the remaining
orbits we proceed by the following rule:

Let R be the set of all atoms of the orbits where no representative is chosen yet.
Put R the set of atoms from I? which are bonded with the maximal number
of already choosen representatives. In R’ we choose an element with orbil of
minimal length (if there is more than onc atom with this property then we choose
an arbitrary one among these). Let A be the set of the chosen representatives.
For a € A let @, be the sel of common fixed points of all symmeltry operations
W for which the corresponding permutation w = ®(W) of the atoms leaves a
unchanged:

Q. = {x € R? | W(x) = x for all W with a* = a}.

We obtain the coordinates of a in the symmetrized model by projecting the CM
coordinates of @ into the set .. The coordinates of the non-representatives are
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obtained simply by applying all symmetry operations to the new coordinates of
the representatives. Note, that because of this projection step, we will obtain for
cach orbit as many points in R* as the length of the orbit.

3.9. Example Al By, continued.

orbit representative | ... is projecied into the
symmetry elements
{1} 1 all
{2,3,4,5,6,7} 2 0,y,2
{8,9,10} 8 Mz g0, Moy,
{11,12,13,14,15,16} 11 Mg yo

All non representative atoms get new coordinates by applying the symmetry
operations Lo the representatives. For instance, we get the coordinates of atom 7
by applying 3q., and then m, o to the coordinates of atom 2.

3.10. Step 6: Optimization of the symmetrized model. The coordinates
of the representatives determine the coordinates of all atoms of the molecule.
Hence, it is required to optimize the coordinates of the representatives in such
a way that the complete model obtained by applying the symmetry operations
to the representatives satisfies the geometrical parameters. Thus, (if there is any
proper symietry) we get an optimization problem of lower dimension. We shall
optimize not only the coordinates of the representatives but also of some other
atoms and auxiliary points which are collected in a set F, sec below.

For a point p € E the vector of its coordinates in the 3D space is denoted by
Xp = (Zp1, Ty2, 2p3) € R Let the set E consist of the m points py,p2,... ,pm. In
order to simplify the notation we construct a tuple x of 3m compouents from the
coordinates of the points of I by

% = (i T i85 %% Epsts B ds BpsFmns. Tt BBy Eped):
The optimization problem is formulated as follows:
F*(x) — min (x € R™ bl < <bui (i =1,...,3m)),
where F*(x) 1= Fry+(x) + 3 (),
Fue(x)i= D h-ud)'+ Y (i -8),

1<i<yEm 151<;8m

Fay Stiny iy <l
where r;; 1= [x,, — X, | and the sum )7 7(x) runs over all terms y(x) defined
troughout this subsection 3.10. The bounds bu; and bl; and the numbers u;; and
l;; are described below. Let bl and bu, respectively, be the tuples (bl),. .. , blyn)
and (buy,. .., bugn). respectively, and let LU* be the matrix where the entry (ij)
is u;; and the entry (j2) is l; (1 < 17 < 7 < m). The function Fiy. is quite
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similar to Fry used in the Crippen algorithm (2.19, formula (3)), but the set of
points, whose coordinates form x and hence the values [;; and u,; are diflerent.
Despite of the additional terms +; and the constraints bl and bu the minimization
problem has similar properties and can be solved by analogous procedures as the
optimization problem in the Crippen algorithm.

In the sequel we describe the construction of the set E, the matrix LU*, the
functions 7, the bounds bl and bu and the initial value for x.

The set E:
We put A=AUuA and E:=AUQ (A, A, Q are defined below).

o A consists of all representatives chosen in the previous step 5.
e The set ) consists of auxiliery points assigned to symmetry operations:
Q = {guw | a € A, w € GF, the distance d, u(a) is exactly determined®},

where ¢, ,, denotes the center point of the orbit 2™ in the molecule. T'wo
auxiliary points which a priori coincide can be identified.

We want to find a set A’ of atoms such that:

if the space model has the required symmetry and all metrical requirements
are satisfied on A = AUQUA’ then all metrical requirements will be satisfied
"automatically” for all atoms via the action of the symmetry group Gp. A
first. idea would be to choose A’ so that in each 2-orbit of bonds there is
a bond between two atoms from A and in each 3-orbit of valence angles
there is a valence angle formed by three atoms from A. But using auxiliary
points we can form a smaller set A"

The set of all pairs of bonded atoms is partitioned into 2-orbits under the
action of the group Gp (i.e. the permutations of atoms assigned to the
symmetry operations). Now we take each 2-orbit, one after the other, and
do the following: Let R be the choosen 2-orbit. All pairs (a,e’) € R which
satisfy

— there is an auxiliary point ¢ = ¢, ,, with ¢’ = w(e) and
— the distance dg, can be computed from the exactly determined d;;

(e.g. via cosine theorem from d,.1).

we put into a set T' of "guaranteed distances”. If there is no pair in A such
that both its atoms alrcady belong to A and if there is no pair in R T
then choose one pair of R such that one atorn of it belongs to A and put
the other atom into A’

Bi.e. can be calculated from 3.1 , @
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Analogously, we partition the set of all triples of atoms forming a valence
angle into 3-orbits under G'p. For each 3-orbit, taken one after the other, we
proceed as follows: Let R be the choosen 3-orbit. For all triples (b,a,a') € R
which satisfy

- atombe A
— there is an auxiliary point ¢ = ¢, with o' = w(a) or a’ = w(b) and

~ the distances d,, and dy can be computed from the exactly determined
d;;.

put the pair (b,a’) into the set T. If we do not find a triple (e,b,¢) in R
such that the pair (a,c) is already completcly contained in A or belongs
to 7', then we will find one satisfying this property after adding one of its
atoms to A’

The functions Fry« and 7; and the bounds bl and bu

Let w € Gp be the permutation of atoms assigned to a motion W € &g (cf.
2.13) and let fiz(W) be the set of fixed points of W. Note that if W is a k-fold
rotoinversion, k # 2, then fiz(W) is a single point. For any other symmetry
operation fiz{W) coincides with the symmetry element of W (cf. 2.12).

We set up the functions Fry« and 44 and the bounds bl and bu in such a way
that F*(x) is zero and bl; < z; < bu; (i = 1,...,3m) il the allocation of the
points of E given by the value of x satifies:

1. For all atoms ¢ € A and all w € Gp: if w(a) = a then W(x.) = Xa
(i.e. x; € fiz(W)).

2. For all auxiliary points g = g, Let c be the center of the points x,, W(x,),
W(x,), ..., W*(x,), then xq = c. Note, that this implies W(x,) = x,.

3. The atoms from A placed by x satify the given geometrical parameters,
i.e. the distance |X, — x| for bonded atoms a,b € A equals the given bond
lenght d., and the angle Z(x, — x;,x. — x;) for atoms a,b,¢ € A forming a
valence angle equals the given valence angle wgp,.

4. For all atoms @’ € A' and a € A: If there is a motion W with ¢’ = w(a)
(ile.a’ € aGF) then x, = W(x,).

Requirement I: Let a € A be a fixed point of w € Gp.

If fiz(W) belongs to a coordinate plane (or to a coordinate axis or is the origin,
respectively) from x, € fiz(W) it follows that one (or two or three, respectively)
coordinates of X, are equal to zero. We put the respective components of bl and
bu equal to zero.

If this is not sufficient for x, € fiz(W), the following term 7 is constructed:



[n the case of an axis fiz(W): v = (cos? Z{b,x,) — 1)?, where b is the direction
vector of fiz(W) and in the case of a plane fiz(W): v = (cos? Z(b, x,))?
b is a vector perpendicular to fiz(W).

, where

Requirement 2: Let g = ¢, and let o' = w(a).

In the same way as for the first requirement we guarantee x, € fiz(W).

In order to complete the second requirement we construct the following term 7:
In the case of an axis fiz(W): v = (cos?(b,x, — X,))?, where b is the direction
vector of fiz(W) and in the case of a plane [iz(W): v = (cos?(b,x, — x,) — 1)%,
where b is a vector perpendicular to fiz(W).

If @' € A’ the analogous terms 7 for @’ instead of a are constructed.

Reguirement 3 We put LU* as [ollows:

The bounds a, and . for distances of atoms a,a’ € A in the matrix LU* are
taken from the matrix LU of the Crippen algorithm. Some distances dg, (a € A,
g € ) involving auxiliary points are calculated during the construction of the
set A, in these cases one sets u,, = l;o = dgo. For the remaining distances the
lower bounds are put to zero and the upper bouunds sufficient large (10\3/|_IZ'T).

Requirement §: Let o' = w(a). Put a term v = |x,r — W(x,)/%.
The initial vector for x.

The initial coordinates for the atoms are taken from the symmetrized model
obtained in step 5. For an auxiliary point g, the initial value of z,; is the
arithmetic average of %,j, Zw(a)j; Twifa)js--- (J = 1,...,3) and the coordinates
Tujy Tw(a)js Tu2(a)is- -+ are taken from the symmetrized model obtained in step 5.

The coordinates resulting from the optimization step define the final 3D Cartesian
coordinates of the symmetrized model.

3.11. Example AlIB;H;; continued.

The set ¢

The permutations corresponding to m = oy, and 2 = € both map 2 + 3 and
11 = 12 and the distances dy3 and di; 12 are known. Hence, the points ¢1 = g2,
2 = Qi1 yr 43 = G20, and g4 = @11 ¢, are candidates for ). From requirement 2
it follows x,, = x,, and x,, = z,,. Hence, @ = {q:,¢=}.

The set A"

The set of bonds is decomposed into the 2-orbits:

{(1,2),(1,3), (1,4), (1,5), (1,6)(1, 7)},

{(2,8),(3,8),(4,9),(5,9),(6,10), (7,10)} and
{(8,11),(8,12),(9,13),(9,14),(10,15), (10, 16)}. In each of these orbits, there is
a bond, where both atoms already are in A.

The set of valence angles is decomposed into four 3-orbits. In two of them we
find a triple where all three atoms are in A (£(1,2,8) and £(2,8,11)).

Knowing the bond length dys = 2d,,, and dyy 1, = 2dy, ,, and the angles £(2,1,3)
and Z(11,8,12) we do not need to add atoms lo A’ during processing the two



remaining 3-orbits.
So, finally, the set A’ is empty.

The symmetrized molecular model of AlB3H,; is shown in the following two
pictures. Squint and you obtain (with a little bit of training) a stereo picture:

3.12. Concluding remarks. The symmetrization algorithm allows the con-
struction of spatial models of molecules with given near interatomic distances
and assumed symmetry. The main advantages are:

o All information about the symmetry of the molecule is taken into account
without expensive interactive participation of the user;

® In most cases, the result is more satisfactory than resuits obtained by meth-
ods which do not consider symmetry (e.g. the methods mentioned in the
introduction);

The optimization steps are the most extensive procedures in both, the Crip-
pen algorithm and the symmetrization algoritm. In the symmetrization
algorithm, the optimization is done with much less variables because of the
choice of representatives w.r.t. symmetry. So, in the example of Al B3H,,,
only 18 variables (6 points in R*) instead of 48 coordinates of all atoms
participate. One possible modification of the symmetrization algorithm is
to omit the extensive optimization step in Crippen algorithm.

The central algebraic point of the theoretical background of the symmetrization
algorithm is the relationship between the spatial symmetry of a molecule and
the symmetry of its molecular graph. In this paper this topic is focused on the
problem of embedding the group ®p into the group Autl'. Here, we gave some
contributions to this problem. This problem seems to be especially worth for
further mathematical investigation, probably involving also aspects of quantum
mechanics and quantum chemistry.
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