

ISSN 0340-6253

MATCDY (34) 109-121 (1996)

# ISOMER ENUMERATION OF UNBRANCHED CATACONDENSED POLYGONAL SYSTEMS WITH PENTAGONS AND HEPTAGONS

B. N. Cyvin, J. Brunvoll and S. J. Cyvin

Department of Physical Chemistry, Norwegian University of Science and Technology (NTNU), N-7034 Trondheim, Norway

#### Abstract

The  $\alpha$ -5-catapolyheptagons are catacondensed polygonal systems with  $\alpha$  pentagons each and otherwise only heptagons. The isomer enumeration problem for the unbranched systems of this category is solved mathematically in terms of explicit formulas. The method implies certain triangular matrices with interesting mathematical properties. Numerical results are also reported.

# Introduction

Azulenoids [1] are polygonal systems consisting of exactly one pentagon each and otherwise heptagons (if any). They have chemical counterparts in certain polycyclic (nonbenzenoid) conjugated hydrocarbons, of which  $C_{10}H_8$  azulene (an isomer of naphthalene) is the prototype. An  $\alpha$ -5-catapolyheptagon contains  $\alpha$  pentagons and  $r-\alpha$  heptagons, where r is used to denote the total number of polygons or rings. The subclass for  $\alpha=1$ , which consists of mono-5-catapolyheptagons contains azulenoids among its members. In the following it is assumed r>1 while the case of r=1 (one single pentagon) is trivial.

In the present work, an algebraic formula for the numbers of nonisomorphic unbranched  $\alpha$ -5-catapolyheptagons was derived. For the sake of brevity,

we shall report the different steps in the derivation without going into details on the combinatorial reasoning behind them. However, the reader is referred to previous descriptions of similar derivations [2-5], where certain triangular matrices are employed. The main purpose of this paper is to demonstrate another application of the same approach, but the concept of triangular matrices had to be generalized in order to accomplish the task. Furthermore, the procedure has been systematized and is presented in a new way along with new mathematical properties of the triangular matrices.

The systems under consideration that have an odd number of vertices correspond to radicals, which are chemically unstable. Otherwise, certain chemical compounds of the category in question may be unstable due to quantum mechanical properties which make them electronically different from usual benzenoids [6].

The present work may be considered as a continuation of the classical enumeration of catafusenes by Balaban and Harary [7] and some later enumerations of a similar kind [8,9]; these works are reviewed elsewhere [10]. However, the present problem is considerably more complex and calls for new mathematical techniques.

#### Mathematical tools

A triangular matrix  $\mathbf{A}(x,y)$  with the elements  $a(x,y)_{ij}$ , where x and y are integer parameters, is defined in terms of the following recurrence relation and initial conditions.

$$a(x,y)_{11} = 1$$
,  $a(x,y)_{(i+1)j} = xa(x,y)_{ij} + ya(x,y)_{i(j-1)}$  (1)

while  $a(x,y)_{i0} = 0$ ,  $a(x,y)_{ij} = 0$  when j > i. Then the matrices **A** and  $\bar{\mathbf{A}}$  which were introduced previously [2-5], are the special cases  $\mathbf{A}(2,1)$  and  $\mathbf{A}(1,2)$ , respectively. Furthermore,  $\mathbf{A}(1,1)$  is the Pascal triangle, which often is written in a matrix form [11,12]:

$$\mathbf{A}(1,1) = \begin{bmatrix} 1 \\ 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 & 1 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$
 (2)

Another example:

$$\mathbf{A}(4,2) = \begin{bmatrix} 1 \\ 4 & 2 \\ 16 & 16 & 4 \\ 64 & 96 & 48 & 8 \\ & \cdot & \cdot & \cdot \\ \end{bmatrix}$$
 (3)

The explicit expression for the matrix elements in question reads:

$$a(x,y)_{i,j} = \binom{i-1}{j-1} x^{i-j} y^{j-1} \tag{4}$$

A useful multiplication rule for two matrices of the considered type is given below

$$\mathbf{A}(x_1, y_1)\mathbf{A}(x_2, y_2) = \mathbf{A}(x_1 + x_2y_1, y_1y_2)$$
 (5)

The following two special cases are of particular interest.

$$\mathbf{A}(x,y)\mathbf{A}(1,1) = \mathbf{A}(x+y,y) \tag{6}$$

$$A(1,1)A(x,y) = A(x+1,y)$$
(7)

From the former relation (6) one obtains with the aid of (4):

$$\sum_{j=1}^{i} a(x,y)_{ij} a(1,1)_{jk} = \sum_{j=1}^{i} {j-1 \choose k-1} a(x,y)_{ij} = \sum_{j=1}^{i} {i-1 \choose j-1} {j-1 \choose k-1} x^{i-j} y^{j-1}$$

$$= {i-1 \choose k-1} (x+y)^{i-k} y^{k-1}$$
(8)

where the last two terms on the right-hand side represent a nontrivial mathematical identity involving binomial coefficients. From the latter relation (7) it is ascertained that any  $\mathbf{A}(x,y)$  matrix can be produced from the Pascal triangle. One has namely

$$\mathbf{A}(x,y) = \mathbf{A}(1,1)\mathbf{A}(x-1,y) = \mathbf{A}(1,1)^2\mathbf{A}(x-2,y) = \dots$$
 (9)

etc., until

$$\mathbf{A}(x,y) = \mathbf{A}(1,1)^{x-1}\mathbf{A}(1,y)$$
 (10)

Herefrom y = 1 gives:

$$\mathbf{A}(x,1) = \mathbf{A}(1,1)^x \tag{11}$$

In general (for an arbitrary y), eqn. (10) may be carried one step further to yield

$$\mathbf{A}(x,y) = \mathbf{A}(1,1)^x \mathbf{A}(0,y) \tag{12}$$

where A(0, y) is a diagonal matrix; specifically:

$$\mathbf{A}(x,y) = \mathbf{A}(1,1)^x \operatorname{diag}(1,y,y^2,y^3,...)$$
(13)

We shall also find it useful to define truncated Pascal triangles as the "trapezoidal" matrices given below.

$$\mathbf{A}'(1,1) = \begin{bmatrix} 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 3 & 1 \\ 1 & 4 & 6 & 4 & 1 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$
 (14)

$$\mathbf{A}''(1,1) = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 3 & 1 \\ 1 & 4 & 6 & 4 & 1 \\ 1 & 5 & 10 & 10 & 5 & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$
(15)

By definition,

$$\mathbf{A}(x,y)\mathbf{A}'(1,1) = \mathbf{A}'(x+y,y) \tag{16}$$

$$\mathbf{A}(x,y)\mathbf{A}''(1,1) = \mathbf{A}''(x+y,y) \tag{17}$$

which is to be compared with eqn. (6).

The definition (1) is not restricted to positive integers x and y; it works equally well when these parameters are zero or negative. Then obviously A(0,1) is the unity matrix:

$$\mathbf{A}(0,1) = \mathbf{E} = \begin{bmatrix} 1 & & & \\ 0 & 1 & & \\ 0 & 0 & 1 & \\ 0 & 0 & 0 & 1 \\ & & & & & \\ \end{bmatrix}$$
 (18)

Based on eqn. (5), it is inferred that any  $\mathbf{A}(x,y)$  when  $y \neq 0$  has an inverse, and specifically that:

$$\mathbf{A}(x,y)\mathbf{A}\left(-\frac{x}{y},\frac{1}{y}\right) = \mathbf{A}\left(-\frac{x}{y},\frac{1}{y}\right)\mathbf{A}(x,y) = \mathbf{E}$$
 (19)

#### Basic principle

The unbranched  $\alpha$ -5-catapolyheptagons under consideration (r > 1) are distributed under the symmetry groups  $D_{2h}$ ,  $C_{2h}$ ,  $C_{2\nu}$  and  $C_s$ . As has been explained previously [2,5], the total number of isomers,  $I_{r\alpha}$ , is given by

$$I_{r\alpha} = \frac{1}{4} (J_{r\alpha} + 3D_{r\alpha} + 2L_{r\alpha} + 4C_{r\alpha} + 2K_{r\alpha})$$
 (20)

Here  $J_{r\alpha}$  are the crude totals, while the numbers of  $D_{2h}$  and  $C_{2h}$  systems are denoted by  $D_{r\alpha}$  and  $C_{r\alpha}$ , respectively. The  $C_{2v}$  systems are divided into three subclasses: (i)  $L_{r\alpha}$  linear; (ii) the  $C_{r\alpha}$  systems in one-to-one correspondence with those of  $C_{2h}$  as cis/trans isomers; (iii) the  $K_{r\alpha}$  remaining  $C_{2v}$  systems, which each consist of one central heptagon with two equivalent branches annelated to it.

#### Crude totals

The crude totals  $J_{r\alpha}$  appear as elements in the trapezoidal matrix

$$\mathbf{J} = \mathbf{A}(2,2)\mathbf{A}''(1,1) = \mathbf{A}''(4,2) \tag{21}$$

The matrix multiplication herein is consistent with (17). Notice that  $\mathbf{A}''$  is not a simple truncation of  $\mathbf{A}(4,2)$  by deleting its two top rows; cf. eqn. (3). However,  $\mathbf{A}(4,2)$  and  $\mathbf{A}''(4,2)$  obey the same recurrence relation, viz. eqn. (1) with x=4, y=2; only the initial conditions are different. Numerical values of  $J_{r\alpha}$  are shown in Table 1. From eqn. (21), it was achieved, by means of relation (8), to deduce an explicit expression for  $J_{r\alpha}$  as:

$$J_{r\alpha} = \left[16\binom{r-2}{\alpha-2} + 16\binom{r-2}{\alpha-1} + 4\binom{r-2}{\alpha}\right] 4^{r-\alpha-2} 2^{\alpha-2}$$

$$= \frac{1}{4} \left[\binom{r-1}{\alpha-1} + \frac{1}{4}\binom{r-2}{\alpha}\right] 2^{2r-\alpha}$$
(22)

Strictly speaking, the  $J_{\tau\alpha}$  numbers should be referred to as the over-all crude totals. Another kind of crude totals are needed when the numbers  $C_{\tau\alpha}$  and  $K_{\tau\alpha}$  are to be determined. These new crude totals are contained in a matrix **H**, which in analogy with eqn. (21) reads

$$\mathbf{H} = \mathbf{A}(2,2)\mathbf{A}'(1,1) = \mathbf{A}'(4,2) \tag{23}$$

The elements of  $\mathbf{A}'(4,2)$  are designated  $H_{\lfloor r/2 \rfloor \lfloor \alpha/2 \rfloor}$  since they are functions of  $\lfloor r/2 \rfloor$  and  $\lfloor \alpha/2 \rfloor$ . This is explained by the fact that the pertinent  $C_{2h}$  and  $C_{2v}$  systems are determined by specifying one of the two symmetrical arms in each system, occasionally along with the sites of annelation to the central part. In numerical form, a portion of the  $\mathbf{A}'(4,2)$  matrix is specified below.

|                       | $\lfloor \alpha/2 \rfloor$ |     |     |     |     |    |
|-----------------------|----------------------------|-----|-----|-----|-----|----|
| $\lfloor r/2 \rfloor$ | 0                          | 1   | 2   | 3   | 4   | 5  |
| 1                     | 1                          | 1   |     |     |     |    |
| 2                     | 4                          | 6   | 2   |     |     |    |
| 3                     | 16                         | 32  | 20  | 4   |     |    |
| 4                     | 64                         | 160 | 144 | 56  | 8   |    |
| 5                     | 256                        | 768 | 896 | 512 | 144 | 16 |

| Tab | le I. Cr | rude totals | $s (J_{r\alpha})$ IOI | unbranche | led a-5-cara | polynepra | gons.  |        |      |     |     |
|-----|----------|-------------|-----------------------|-----------|--------------|-----------|--------|--------|------|-----|-----|
|     | σ        |             |                       |           |              |           |        |        |      |     |     |
| T   | 0        | 1           | 2                     | 3         | 4            | .c        | 9      | 2      | 8    | 6   | 10  |
| 2   | 1        | 2           | 1                     |           |              |           |        |        |      |     |     |
| က   | 4        | 10          | ∞                     | 2         |              |           |        |        |      |     |     |
| 4   | 16       | 48          | 52                    |           | 4            |           |        |        |      |     |     |
| 3   | 64       |             | 304                   |           | 64           | ∞         |        |        |      |     |     |
| 9   | 256      | 1024        | 1664                  | 1408      | 656          | 160       | 16     |        |      |     |     |
| ~   | 1024     |             | 8704                  |           | 5440         | 1952      | 384    | 32     |      |     |     |
| œ   | 4096     |             | 44032                 |           | 39680        | 18688     | 5440   | 968    |      |     |     |
| 6   | 16384    |             | 217088                |           | 265216       | 154112    | 59136  | 14464  | 2048 | 128 |     |
| 10  | 65536    |             | 1048576               |           | 1662976      | 1146880   | 544768 | 176128 |      |     | 256 |

The elements of  $\mathbf{A}'(4,2)$ , as well as those of  $\mathbf{A}(4,2)$  and  $\mathbf{A}''(4,2)$ , obey the recurrence relation (1) with x=4, y=2. Similarly to eqn. (22), also an explicit expression for  $H_{[r/2]|\alpha/2|}$  was achieved:

$$H_{\lfloor r/2 \rfloor \lfloor \alpha/2 \rfloor} = \begin{bmatrix} 4 \binom{\lfloor r/2 \rfloor - 1}{\lfloor \alpha/2 \rfloor - 1} + 2 \binom{\lfloor r/2 \rfloor - 1}{\lfloor \alpha/2 \rfloor} \end{bmatrix} 4^{\lfloor r/2 \rfloor - \lfloor \alpha/2 \rfloor - 1} 2^{\lfloor \alpha/2 \rfloor - 1} \\ = \frac{1}{4} \begin{bmatrix} \binom{\lfloor r/2 \rfloor - 1}{\lfloor \alpha/2 \rfloor - 1} + \binom{\lfloor r/2 \rfloor}{\lfloor \alpha/2 \rfloor} \end{bmatrix} 2^{2\lfloor r/2 \rfloor - \lfloor \alpha/2 \rfloor}$$
(24)

## Linear systems

In the case of unbranched  $\alpha$ -5-catapolyheptagons there are only three systems, all of them with r=2, which appropriately are referred to as linear and must be taken into account especially. Two of these systems belong to the  $D_{2h}$  symmetry and are represented by two pentagons or two heptagons (pentalene and heptalene, respectively). In addition, there is a  $C_{2v}$  system consisting of one pentagon and one heptagon (azulene). In other words,  $D_{20} = D_{22} = 1$  and  $D_{r\alpha} = 0$  otherwise;  $L_{21} = 1$ ,  $L_{r\alpha} = 0$  otherwise. These properties are expressed mathematically in the following sophisticated way:

$$D_{r\alpha} = \begin{pmatrix} 2 \\ r \end{pmatrix} \left[ 2 \begin{pmatrix} 0 \\ \alpha \end{pmatrix} - 2 \begin{pmatrix} 1 \\ \alpha \end{pmatrix} + \begin{pmatrix} 2 \\ \alpha \end{pmatrix} \right] \tag{25}$$

$$L_{r\alpha} = \begin{pmatrix} 2 \\ r \end{pmatrix} \left[ \begin{pmatrix} 1 \\ \alpha \end{pmatrix} - \begin{pmatrix} 0 \\ \alpha \end{pmatrix} \right] \tag{26}$$

## Centrosymmetrical systems

Centrosymmetrical  $(C_{2h})$  unbranched  $\alpha$ -5-catapolyheptagons occur only when both r and  $\alpha$  are even numbers (or zero for  $\alpha$ ). Their numbers for r > 2 are given by  $\frac{1}{2}X_{r\alpha}$ , where

$$X_{r\alpha} = \frac{1}{4} \left[ 1 + (-1)^{\alpha} \right] \left[ 1 + (-1)^{r} \right] H_{\lfloor r/2 \rfloor \lfloor \alpha/2 \rfloor}$$
 (27)

For r=2, the presence of the  $D_{2h}$  (linear) systems must be taken into account. In effect,

$$C_{r\alpha} = \frac{1}{2}(X_{r\alpha} - D_{r\alpha}) \tag{28}$$

Numerical values of  $C_{r\alpha}$  are found in Table 2.

## Mirror-symmetrical systems

The  $K_{r\alpha}$  mirror-symmetrical  $(C_{2v})$  unbranched  $\alpha$ -5-catapolyheptagons occur when r is odd. Introduce

$$Y_{r\alpha} = \frac{1}{2} [1 - (-1)^r] H_{\lfloor r/2 \rfloor \lfloor \alpha/2 \rfloor}$$
 (29)

Table 2. Numbers of centrosymmetrical  $(C_{2h})$  unbranched

 $\alpha$ -5-catapolyheptagons:  $C_{r\alpha}$ . 

When  $\alpha$  is even, a system of the category in question has a central heptagon, which has two nonequivalent pairs of sites for annelation of the two (equivalent) branches, and the number of systems is  $2Y_{r\alpha}$ . When  $\alpha$  is odd, on the other hand, the central polygon is a pentagon with only one pair of sites, and the number is  $Y_{r\alpha}$ . In conclusion,

$$K_{r\alpha} = \frac{1}{2} \left\{ 2 \left[ 1 + (-1)^{\alpha} \right] + 1 - (-1)^{\alpha} \right\} Y_{r\alpha} = \frac{1}{2} \left[ 3 + (-1)^{\alpha} \right] Y_{r\alpha}$$
 (30)

Table 3 shows the numerical values of  $K_{r\alpha}$  to r = 10.

Table 3. Numbers of nonlinear mirror-symmetrical  $(C_{2v})$  unbranched

| $\alpha$ -5-catapolyneptagons | when | r | ıs | oda: | Kra. |
|-------------------------------|------|---|----|------|------|
|                               |      |   |    |      |      |

|    | α   |    | 1 0 |     |     |     | 7.4 |    |    |   |    |
|----|-----|----|-----|-----|-----|-----|-----|----|----|---|----|
| r  | 0   | 1  | 2   | 3   | 4   | 5   | 6   | 7  | 8  | 9 | 10 |
| 2  | 0   | 0  | 0   |     |     |     |     |    |    |   |    |
| 3  | 2   | 1  | 2   | 1   |     |     |     |    |    |   |    |
| 4  | 0   | 0  | 0   | 0   | 0   |     |     |    |    |   |    |
| 5  | 8   | 4  | 12  | 6   | 4   | 2   |     |    |    |   |    |
| 6  | 0   | 0  | 0   | 0   | 0   | 0   | 0   |    |    |   |    |
| 7  | 32  | 16 | 64  | 32  | 40  | 20  | 8   | 4  |    |   |    |
| 8  | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0  |   |    |
| 9  | 128 | 64 | 320 | 160 | 288 | 144 | 112 | 56 | 16 | 8 |    |
| 10 | 0   | 0  | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0 | 0  |

#### Total numbers of isomers

Now all the quantities on the right-hand side of eqn. (20) have been analyzed so that they can be expressed explicitly in terms of r and  $\alpha$ . The net result for the total numbers  $I_{r\alpha}$  of unbranched  $\alpha$ -5-catapolyheptagons reads

$$I_{r\alpha} = \frac{1}{4} \left\{ J_{r\alpha} + 3D_{r\alpha} + 2L_{r\alpha} + 2\left(X_{r\alpha} - D_{r\alpha}\right) + \left[3 + (-1)^{\alpha}\right] Y_{r\alpha} \right\}$$
$$= \frac{1}{4} \left\{ J_{r\alpha} + {2 \choose r} {2 \choose \alpha} + \left[1 - (-1)^{r}\right] \left[2 + (-1)^{\alpha}\right] H_{\lfloor r/2 \rfloor \lfloor \alpha/2 \rfloor} \right\} (31)$$

and finally:

$$I_{r\alpha} = \frac{1}{16} \left\{ \begin{bmatrix} \binom{r-1}{\alpha-1} + \frac{1}{4} \binom{r-2}{\alpha} \end{bmatrix} 2^{2r-\alpha} + 4 \binom{2}{r} \binom{2}{\alpha} + [2-(-1)^r + (-1)^{\alpha}] \right.$$

$$\times \left[ \binom{\lfloor r/2 \rfloor - 1}{\lfloor \alpha/2 \rfloor - 1} + \binom{\lfloor r/2 \rfloor}{\lfloor \alpha/2 \rfloor} \right] 2^{2\lfloor r/2 \rfloor - \lfloor \alpha/2 \rfloor} \right\}$$

$$(32)$$

Numerical values are given in Table 4.

Table 4. Total numbers of unbranched  $\alpha$ -5-catapolyheptagons ( $\alpha$  pentagons,  $r-\alpha$  heptagons):  $I_{r\alpha}$ .

|    | Ø     |       |        |       |      |        |      |     |     |      |    |
|----|-------|-------|--------|-------|------|--------|------|-----|-----|------|----|
| 7  | 0     | 1     | 2      | က     | 4    | ro     | 9    | 7   | 00  | 6    | 10 |
| 2  | 1     | 1     | 1      |       |      |        |      |     |     |      |    |
| 3  | 2     | 3     | 3      | 1     |      |        |      |     |     |      |    |
| 4  | 9     | 12    | 16     | 9     | 2    |        |      |     |     |      |    |
| 20 | 20    | 58    | 82     |       |      | e      |      |     |     |      |    |
| 9  | 72    | 256   | 432    |       |      | 40     |      |     |     |      |    |
| ~  | 272   | 1160  | 2208   |       |      | 498    |      |     |     |      |    |
| 00 | 1056  | 5120  | 11088  | 13312 | 9992 | 4672   | 1388 | 224 |     |      |    |
| 6  | 4160  | 22560 | 54432  |       |      | 38600  |      |     | 520 |      |    |
| 01 | 16512 | 98304 | 262528 |       | 4    | 286720 | _    | 4   |     | 1152 | 72 |

Table 5. Numbers of unbranched mono-5-catapolyheptagons (including unbranched catacondensed azulenoids).

| H | Formula        | C55 | ర     | Total |
|---|----------------|-----|-------|-------|
|   | C10H8          |     | 0     | 1     |
|   | $C_{15}H_{11}$ | 1   | 2     | 3     |
|   | C20H14         | 0   | 12    | 12    |
|   | $C_{25}H_{17}$ | 4   | 54    | 58    |
|   | $C_{30}H_{20}$ | 0   | 256   | 256   |
|   | C35H23         | 16  | 1144  | 1160  |
|   | C40H26         | 0   | 5120  | 5120  |
|   | C45H29         | 64  | 22496 | 22560 |
|   | C50H32         | 0   | 98304 | 98304 |
|   |                |     |       |       |

## Unbranched mono-5-catapolyheptagons The title systems consist

of the unbranched catacondensed azulenoids and the corresponding helicenic systems. Their numbers of isomers are shown in Table 5, where the distributions into symmetry groups are included. Only  $C_{2v}$  and  $C_s$  are possible. The catacondensed (nonhelicenic) azulenoids, both unbranched and branched, have been enumerated previously to r=7 [1]. In supplement, the total number of 17436 for r=8 was determined; these systems are classified into 5094  $C_s$  unbranched and  $19C_{2v}+12323C_s$  branched. From the previous data [1] and the present supplements, along with Table 5, the numbers of helicenic unbranched mono-5-catapolyheptagons up to r=8 are available by subtractions. The result is  $1C_{2v}+3C_s$  systems at r=7, which are the smallest helicenic systems of the category under consideration, and  $26C_s$  systems at r=8. These numbers and symmetries of helicenic systems were corroborated by combinatorial constructions.

## References

- J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Azulenoids, Match (this issue).
- [2] S. J. Cyvin, J. Brunvoll and B. N. Cyvin, Di-4-Catafusenes: A New Class of Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons, Croat. Chem. Acta 69, 177 (1996).
- [3] S. J. Cyvin, B. N. Cyvin and J. Brunvoll, Isomer Enumeration of Some Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons, J. Mol. Struct. 376, 495 (1996).
- [4] J. Brunvoll, B. N. Cyvin and S. J. Cyvin, Enumeration of Poly-5-Catafusenes Representing a Class of Catacondensed Polycyclic Conjugated Hydrocarbons, J. Chem. Inf. Comput. Sci. 36, 91 (1996).
- [5] B. N. Cyvin, J. Brunvoll and S. J. Cyvin, Di-5-Catafusenes: A Subclass of Indacenoids, Match 33, 35 (1996).

- [6] A. T. Balaban, Chemical Graphs. XVII. (Aromaticity. X) Cata-Condensed Polycyclic Hydrocarbons which Fulfill the Hückel Rule but Lack Closed Electronic Shells, Rev. Roum. Chim. 17, 1531 (1972).
- [7] A. T. Balaban and F. Harary, Chemical Graphs, V: Enumeration and Proposed Nomenclature of Benzenoid Cata-Condensed Polycyclic Aromatic Hydrocarbons, Tetrahedron 24, 2505 (1968).
- [8] F. Harary and A. J. Schwenk, The Number of Caterpillars, Discrete Math. 6, 359 (1973).
- [9] A. T. Balaban, Chemical Graphs, Part 50: Symmetry and Enumeration of Fibonacenes (Unbranched Catacondensed Benzenoids Isoarithmic with Helicenes and Zigzag Catafusenes), Match 24, 29 (1989); erratum: ibid. 25, 275 (1990).
- [10] B. N. Cyvin, J. Brunvoll and S. J. Cyvin, Enumeration of Benzenoid Systems and Other Polyhexes, Topics Current Chem. 162, 65 (1992).
- [11] J. Riordan, An Introduction to Combinatorial Analysis, Wiley/Chapman, New York/London 1958.
- [12] J. Riordan, Combinatorial Identities, New York 1968.