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Abstract

The a-5-catapolyheptagons are catacondensed polygonal systems
with o pentagons each and otherwise only heptagons. The isomer
enumeration problem for the unbranched systems of this category is
solved mathematically in terms of explicit formulas. The method im-
plies certain triangular matrices with interesting mathematical prop-
erties. Numerical results are also reported.

Introduction

Azulenoids [1] are polygonal systems consisting of exactly one pentagon
each and otherwise heptagons (if any). They have chemical counterparts in
certain polycyclic (nonbenzenoid) conjugated hydrocarbons, of which C,oHg
azulene (an isomer of naphthalene) is the prototype. An a-5-catapolyhepta-
gon contains o pentagons and + — a heptagons, where r is used to denote the
total number of polygons or rings. The subclass for a = 1, which consists of
mono-5-catapolyheptagons contains azulenoids among its members. In the
following it is assumed 7 > 1 while the case of 7 = 1 (one single pentagon)
is trivial.

In the present work, an algebraic formula for the numbers of nonisomor-
phic unbranched a-j-catapolyheptagons was derived. For the sake of brevity,
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we shall report the different steps in the derivation without geing into details
on the combinatorial reasoning behind them. However, the reader is referred
to previous descriptions of similar derivations [2-5|, where certain triangular
matrices are employed. The main purpose of this paper is to demonstrate
ancther application of the same approach, but the concept of triangular ma-
trices had to be generalized in order to accomplish the task. Furthermore,
the procedure has been systematized and is presented in a new way along
with new mathematical properties of the triangular matrices.

The systems under consideration that have an odd number of vertices cor-
respond to radicals, which are chemically unstable. Otherwise, certain chem-
ical compounds of the category in question may be unstable due to quantum-—
mechanical properties which make them electronically different from usual
benzenoids [6].

The present work may be considered as a continuation of the classical
enumeration of catafusenes by Balaban and Harary [7] and some later enu-
merations of a similar kind (8,9]; these works are reviewed elsewhere [10].
However, the present problem is considerably more complex and calls for
new mathematical techniques.

Mathematical tools

A triangular matrix A(z,y) with the elements a(z, y);;, where z and y
are integer parameters, is defined in terms of the following recurrence relation
and initial conditions.

a(z,yln=1, ﬂ(1>y)(=+1)j = za(z,y)y + yﬂ(ﬁﬂay)i(g—l) (1)

while a(z,y)i = 0, a(z,y);; = 0 when j > i. Then the matrices A and
A which were introduced previously [2-5], are the special cases A(2,1) and
A(1,2), respectively. Furthermore, A(1,1) is the Pascal triangle, which often
is written in a matrix form [11,12]:

AL 1) =

e
L e
[
—
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Another exarmple:

1
1 2

A(4,2)=|16 16 4 (3)
64 96 48 8

The explicit expression for the matrix elements in question reads:

1

(2, Wi = (jj)z*-fy"-l ()

A useful multiplication rule for two matrices of the considered type is
given below

Az, y1)Alzz,y2) = Alw1 + 2291, 1132) (5)
The following two special cases are of particular interest.
Az, 1)A(L1) = Az +y.9) (6)
A(LDA(z,y)=Az+1,y) (7)
From the former relation (6) one obtains with the aid of (4):

S Sl = E (;: i)a(z,y)ﬁ <3 (z‘ - 1) (}1 : i)zivym

‘ Zli-1

i=1 =1
= (;: 11) (e+y) Tyt ®

where the last two terms on the right-hand side represent a nontrivial math-
ematical identity involving binomial coefficients. From the latter relation (7)
it is ascertained that any A(z,y) matrix can be produced from the Pascal
triangle. One has namely
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Az, v} =A(L DAz —1,9) = A(1L1)*A(z — 2,9) = (9)

ete., until
Alz,y) = A(L 1AL y) (10)
Herefrom y = 1 gives:
Az, 1) =A(Q,1)* (11)

In general (for an arbitrary y), eqn. (10) may be carried one step further to
yield

Alz,y) = AL 1)7A{0,9) (12)
where A(0,y) is a diagonal matrix; specifically:
A(Iay) = A(l,l)zdiﬁ.g(l,y,yaya)“..) (13)

We shall also find it useful to define truncated Pascal triangles as the
"trapezoidal® matrices given below.

A1) = (14)

———
LN R
W
-

=

A"(1,1) = (15)

—_ =
[ BRI o
—
(=l R
—
-
[

—

By definition,

Az, y)A'(L1) = Allz +y,1) (16)
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Az, y)A"(1,1) = A"(z +y,1) an

which is to be compared with egn. (6).

The definition (1) is not restricted to positive integers z and y; it works
equally well when these parameters are zero or negative. Then obviously
A(0,1) is the unity matrix:

AO,1)=E= (18)

oo o
[ =
=
i

Based on eqn. (5}, it is inferred that any A{z,y) when y # 0 has an inverse,
and specifically that:

x 1 z 1
Alz,y)A (—5, ;) =k (7;, ;) Kz}~ (19)

Basic principle

The unbranched a-5-catapolyheptagons under consideration (r > 1) are
distributed under the symmetry groups Day, Cap, Ca, and 5. As has been
explained previously (2,5], the total number of isomers, ., is given by

1
Lo = 4(Jra +3Dra +2Lra + 4Csa + 2K ra) (20)

Here J,, are the crude totals, while the numbers of Dy, and (), systems are
denoted by D, and C,,, respectively. The Cy, systems are divided into three
subclasses: (i) L., linear; (ii) the C,, systems in one-to-one correspondence
with those of Coy, as cis/trans isomers; (iii) the K, remaining C5, systems,
which each consist of one central heptagon with two equivalent branches
annelated to it.

Crude totals

The crude totals J,, appear as elements in the trapezoidal matrix
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J=A(2,2)A"(1,1) = A"(4,2) (21)

The matrix multiplication herein is consistent with (17). Notice that A" is
not a simple truncation of A(4,2) by deleting its two top rows; cf. eqn. (3).
However, A(4,2) and A”(4,2) obey the same recurrence relation, viz. eqn.
(1) with = 4, y = 2 ; only the initial conditions are different. Numerical
values of J,, are shown in Table 1. From eqn. (21), it was achieved, by
means of relation (8), to deduce an explicit expression for J,, as:

[wCig+mC:ﬂ+{TfH¥¢%H
[ R | e @)

Strictly speaking, the J., numbers should be referred to as the over-all
crude totals. Another kind of crude totals are needed when the numbers C;q
and K,, are to be determined. These new crude totals are contained in a
matrix H, which in analogy with egn. (21) reads

Joa

I

It

H=A(2,2)A'(1,1) = A'(4,2) (23)

The elements of A’(4,2) are designated H\,/3j|as2 Since they are functions
of |r/2] and |o/2]. This is explained by the fact that the pertinent Cs;, and
C 3, systems are determined by specifying one of the two symmetrical arms
in each system, occasionally along with the sites of annelation to the central
part. In numerical form, a portion of the A'(4,2) matrix is specified below.

[e/2]
[r/2] 0 1 2 3 4 5
1 11
2 4 6 2
30 16 32 20 4
4| 64 160 144 56 8
5 | 256 768 896 512 144 16
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The elements of A’(4,2), as well as those of A(4,2) and A”(4,2) , obey
the recurrence relation (1) with z = 4, y = 2. Similarly to eqn. (22), also an
explicit expression for Hi,/aj|as2) Was achieved:

oo = (072 1) a2 )

() (e o

Linear systems

I

In the case of unbranched a-&5-catapolyheptagons there are only three
systems, all of them with r = 2, which appropriately are referred to as linear
and must be taken into account especially. Two of these systems belong to
the Dy, symmetry and are represented by two pentagons or two heptagons
(pentalene and heptalene, respectively). In addition, there is a C, system
consisting of one pentagon and one heptagon (azulenc). In other words,
Dyy = D3 = 1 and D,, = 0 otherwise; Loy = 1, L., = 0 otherwise. These
properties are expressed mathematically in the following sophisticated way:

e QU))0) e
OO0 -

Centrosymmetrical systems
Centrosymmetrical (Cy,) unbranched a-5-catapolyheptagons occur only

when both r and @ are even numbers (or zero for a). Their numbers for
r > 2 are given by $ X, where

Xea = g [+ (=17 1+ (1] Hirppgore (21)

For r = 2, the presence of the Dy, (linear) systems must be taken into
account. In effect,
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Cra = 5(Xea = Dra) (28)

Numerical values of C,, are found in Table 2.
Mirror-symmetrical systems

The K,, mirror-symmetrical (Cs,) unbranched a-5-catapolyheptagons
oceur when r is odd. Introduce
1

Yoa = 5 (1 = (=1 Hirzylara) (29)

Table 2. Numbers of centrosymmetrical (Csy,) unbranched
a-5-catapolyheptagons: Ciq.

«

r 0 1 2 3 4 5 6 7 8 9 10
2 00 0

3 00 00

4 20 30 1

5 00 00 00

6 8 0 16 0 10 0 2

74 00 00 00 00

8(32 0 8 0O 72 0 28 0 4

9 00 00 00 00 00

10 {128 0 384 O 448 0 256 0 72 0 8

When « is even, a system of the category in question has a central heptagon,
which has two nonequivalent pairs of sites for annelation of the two (equiv-
alent) branches, and the number of systems is 2Y;,. When a is odd, on the
other hand, the central polygon is a pentagon with only one pair of sites, and
the number is Y;4. In conclusion,

K= 3 2014+ (0] 41 (-1} ¥ = S 3+ (111 ¥ (30)

Table 3 shows the numerical values of K, to r = 10.
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Table 3. Numbers of nonlinear mirror-symmetrical (Cy,) unbranched
a-5-catapolyheptagons when r is odd: K.

(04
r 0 1 2 3 4 5 6 7 8 9 10
2 0 0 0
3 2 1 2 1
4 0 0 0 0 0
5 8 4 12 6 4 2
6 0 0 0 0 0 0 0
7132 16 64 32 40 20 & 4
8 0 0 0 0 0 0 0 0 0
9 1128 64 320 160 288 144 112 56 16 8
10 0 0 0 0 0 0 0O 0 00 0

Total numbers of isomers

Now all the quantities on the right-hand side of eqn. (20) have been
analyzed so that they can be expressed explicitly in terms of r and a. The
net result for the total numbers [, of unbranched w-5-catapolyheptagons
reads

1
Ia = 7{Jra+3Dra+2Lea+2(¥ra = Dra) + 3+ (~1)°] Yra}

s i {J,a + (2) (2) + 1= (=124 (1) Hippe) Lam} (31)

T (o3

and Bzally:
b = () 22 o () () +rm o
x [(Ll;//zjj B 11) + ( LL;//EJJ)] glr/2l-la/2)y (32

Numerical values are given in Table 4.
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Unbranched mono-5-catapolyheptagons The title systems consist

of the unbranched catacondensed azulenoids and the corresponding helicenic
systems. Their numbers of isomers are shown in Table 5, where the dis-
tributions into symmetry groups are included. Only O, and C, are pos-
sible. The catacondensed {nonhelicenic) azulenoids, both unbranched and
branched, have been enumerated previously to » = 7 [1]. In supplement, the
total number of 17436 for r = 8 was determined; these systems are classified
into 5094 C; unbranched and 19C;,+ 12323C, branched. From the previ-
ous data [1] and the present supplements, along with Table 5, the numbers
of helicenic unbranched mono-5-catapolyheptagons up to r = 8 are avail-
able by subtractions. The result is 1C5, + 3C; systems at r = 7, which are
the smallest helicenic systems of the category under consideration, and 26C,
systems at 7 = 8. These numbers and symmetries of helicenic systems were
corroborated by combinatorial constructions.
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