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Abstract

Fullerenc-fike molecnles may  in principle  include other polygons than just
pentagons and hexagons. In this paper, two possible geometries for such fulleroids
are discussed, both with exactly 260 “atoms” and consisting of pentagons and hep-
tagons, only, exhibiting icosahedral symmetry. It is shown that they are the smallest
such structures (easy), how they can be found and that — up to isomorphisms - they
are the only two such structures with exactly that many atoms (more diffienlt and
based on the Theory of Delaney Symbols), this way presenting a complete answer
to a question raised by Patrick Fowler almost a year ago.

1 Introduction

When visiting Exeter last spring, we were asked by Patrick Fowler whether a fullerene-like
structure with 260 vertices consisting of pentagons and heptagons (rather than hexagons)
only, and exhibiting icosahedral symmetry, could exist. More precisely, he asked whether
ornot there exist tilings 7' of the sphere (that is, embedded spherical graphs) encompassing
exactly 72 pentagons and 60 heptagons, 3 of them meeting at each vertex, with a symmetry
group G = G(T) isomorphic to the gronp I of rotational (or proper) symmetries of the
icosahedron.

Clearly, if such a tiling consists of f5 pentagons and f; heptagons, the number ¢ of
its edges will be equal to %(5.)‘5 + 7f7) while the number v of its vertices will be equal to
%(sfﬁ + 7f7), so the Euler formula f5 + f7 — e + v = 2 implies

12=06fs+6fr —3(5fs +7f:)+2(5f; +7/7),
that is,
12+ f7 = fs.
In addition, as no element ¢ from the gronp G except the identity clement can fix a

heptagon, the number f; must be a multiple of the order of the group. that is, we mus
have

fr=60-n
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for some n € N. So, the numbers considered by Patrick Fowler are the minimal numbers
of pentagons and heptagons for which such a structure might exist.

Fortunately, it occured to us immediately that it should be possible to find a definite
answer to this question by applying to it the theory of Delaney syrmbols 1hat had heen
developed in Bielefeld over the last 12 years (cf. [2],[3],[3],[4]). In a way, this theory
allows to translate such questions into easily decidable algebraic-combinatoric gquestions
similar to the way, Cartesian coordinate geometry allows to translate classical geometric
questions into easily manipulable algebra. And indeed, applying our theory, we found
that exactly two such structures exist, both of which are depicted in Figure 1,

In this note, we want to present a proof of this fact. We'll start with a short introdine
tion into the theory of Delaney symbols, and we'll then detail the arguments which allow
to determine the two structures depicted in Figure 1 as the only two structures - up to
isomorphism  satisfving all of the above requirements.

Figure 1

2 Tilings

Let M be a two-dimensional manifold, and let T be a tiling of M, that is, a partition of
M into three different types of disjoint subsets, the set Ty of vertices of T, the set. T of
edges of T, and the set T, of faces of T.

By definition. the vertices vy, vy, ... are one-point subsets, that is, subsets consisting
of just one clement (with which they will be identified whenever convenient): the edses
€1, ¢, ... are subsets of M such that, for any such edge e € T}, there exists a homeomor-

phism g, : (0,1) < ¢ of the open interval (0, 1) onto e which extends o a homeomorphisin
7. 1 [0, 1] = € of the closed interval {0, 1] outo the closure € of ¢ having the property that
both, ©.(0) and $:(1), are in Ty; and the faces fy, fo,... of T arc open subsets of 1 such
that, for each face f & Ty, there exists a homeomorphism

Wi {zeCllz) <1}
from the open disk {z € €

|z} < 1} onto f which extends to & homeomorphisin :, :
{z€C||z] <1} F of the closed disk {z € C [ |z] < 1} onto the closmre f of f having
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the property that @f is a union of finitely many vertices and cdges (and,

(2) i{zEL’| lz|=1}
hence, of as many edges as vertices - their nnmber will be called the degree of f; and f is
called a k-gon if its degree is k). Morcover, for any « € M, there exists a neighbourhood
U(z) of M such that U(x) intersects only finitely many vertices, edges, and faces. As is
well known, this implies that for any « € M with x € e for some ¢ € T}, there exists
a neighbourhood U(z) intersecting just e and two faces fi, f; € Ty, the only two faces
containing e in their boundary. And for any » € Tj, there exists a neighbonrhood U ()
intersecting exactly those edges and faces which contain z in their closure which then
can be labelled ey, ey,..., ¢ and fi, fo,..., fi. fesr = [y respectively so that, for cach
i=1,....k, the two faces containing ¢; in their boundary are precisely f; and fi,. The
number & of faces (or edges) containing a given vertex x € Tj in their boundary will be
called the degree of z. !

Clearly, using this terminology, we can define a tiling T of the sphere S? o be one of
Fowler’s Phantasmagorical Fulleroids, if all of its vertices have degree 3, all of its faces
are cither pentagons or heptagons, there are precisely 72 pentagons and 60 heptagons.
and there exists a gronp G of homeomorphisms of S” respecting the partition 7' which is
isomorphic to the group I of rotational symmetries of the icosahedron.

3 The Flagspace of a Tiling

As above, we consider a tiling T of a 2-manifold M. The flagspace F(T') of T is defined
to be the set of triples (v, e, f) consisting of one vertex v € Ty, one edge ¢ € Ty, and one
face f € T) such that (v =)7 C & C [ holds. Obviously, for any vertex v € T, of degree k,
there exist 2k flags containing v as their “0-dimensional component”, for any edge ¢ € T,
there exist 4 flags containing e as their “l1-dimensional component”, and for any n-gon
[ € Ty, there exist 2n flags containing f as their “2-dimensional component”.

Two flags (v, ¢, f) and (v',¢', f') are called 0-neighbours, if v # ¢',¢ = ¢/, and f = [’
holds. They are called 1-neighbours, if v = v, e # ¢, and f = f* holds. And they are
called 2-neighbours, if v = v/, e = ¢/, and f # f holds. From our definition of a tiling and
standard two-dimensional topology, it follows easily that for any flag there exist precisely
one O-neighbour, one 1-neighbour and one 2-neighbour. Moreover, the flags containing a
given vertex v of degree £ form a “circular” sequence of 2k flags

(0,1, f1), (v, 02, f1), (v, 0, fo), ooy (v ek, fi), (s ey, fi),

any two consccutive ones being alternatingly cither 1- or 2-neighbours, the fligs coutaining
a given edge e form a circular sequence of 4 sequences

(vise, [1)s (vas e f1), (w2, e, fo), (on,e, fo),

any two consecutive ones being alternatingly ecither 0- or 2-neighbours, and the flags
containing a given face f of degree & form a circular sequence

(v1,e1, 1), (va,en, £), (va, €0, F)y o ooy (o, €, £ (01, €0 )y

'Here, for the sake of simplicity, we have introduced the special class of tilings we have called collular
in [d]. The experienced reader will casily verify that our arguments below also work for the more geneval
class of tilings introduced there and that, consequently, they prove that all such - potentially more general
- tilings satisfying Patrick Fowler's requirements actually are cellular.
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any two consecutive ones being alternatingly either 0- or 1-neighbours.

It is also easy to see that M is connected if and only if there exists, for auy two flags
(v.e, f)and (v, ¢, ), asequence of flags (v, ¢o, fo) = (v, e, f), (o1, e1. fi) ... (H e Fr
{(v', ¢, ) such that any two consecutive ones are O-, 1- or 2-neighbours (of cach other).
and that M is orientable if and only if we can split the set F(7T') of flags into two classes
such that any pair of neighbouring flags consists of exactly one flag from eacli of these
two classes. In this case, an orientation of M can be specified by labelling the Hags in one
of these two classes as positively oriented flags (namely, say, those flags (0. ¢, [) where f
is on the right side of e if ¢ 1s oriented in the direction from » towards the other verrex in
©), while the other one may be labelled as negatively oriented.

A more intuitive approach describing the notions in this section is given at the end of
the text.

4 The Flag Graph of a Tiling

To collect all these facts in a convenient way, we may introduce the flay gruph I'(T) =
(F(T); &0, &1, &) of T whose vertex set is the set F(T') of flags of T and which has three
kinds of edges contained in &, £;, and &,, respectively: the O-edges consisting of all pairs of
O-neighbours, the l-edges consisting of all pairs of 1-neighbours, and the 2-edges consisting
of all pairs of 2-neighbours. The above observations can now be stated as follows:

(i) for any flag F = (v.e, f) € F(T) and any i € {0,1,2}, there exists exactly one
iedge {F, F'} € & containing F;

(ii) M is connected if and only if the graph (F(T'), & U &, U E,) is connected:
(iii) M is orientable, if and only if (F(T),& U & U E) is bipartite;

{iv) for any 7 € {0,1,2}, the connected components of T;(T) = (F(T), [J £;)  the
I7E

i-components of T(T) - correspond in a canonical one-to-one fashion to the subscts
in T for a given vertex v € Ty (or edge ¢ € T} or face f € Ty). the cormesponding
0- {or 1- or 2-)component. forms a cycle of Hags connected alternatingly by 1- and
2- (or 0- and 2-, or 0- and 1-}edges, consisting of altogether 24 flags,  with & =2
in the case of edges ¢ € T and & coinciding with the degree of © or f, respectively,
in the other two cases.

In addition,we can easily reconstruct M and T from T'(T): Consider the stadard
simplex
A= {{wo, 1, a2) € R} | o, @1, 2 > Oyag + 2y + 2y = 1}

and its cartesian product A x F(T) with F(T) and define two powmts, say
(Ceospoag), (vve, f)) and ((who ), 0h), (W) f1)), in A x F(T) to be equivadent if aned
only if 2y = af. 0, = {72 = 24 and if - in addition — (v, e, f) and (»', ¢/, ') ave in the
same connected component of (F(1'). |J &).
=0
So, if (g, xy, x2) is contained in the interior of A, none of the poinis ((wg, zy.00). (¢, f))

is equivalent to any other point. If, say. o = 0 and ) # 0 # @y, then ((0,2..05), (v, 0, f))
is equivalent with (0,2, ), (¢, ¢/, J')) whenever (s, ¢, f) and (v/, ¢/, [') are conmected by




-91-

a O-edge, and if, say 2y = oy = 0 and x5 = 1, then ((0,0,1), (v, e, f)) is equivalent with
((0,0,1), (v" ¢!, f)) if and only if [ = f’, that is, if and only if {v,e. f) and (&' ¢, )
can be connected by a sequence of 0- and l-edges. Now, identify any two equivalent
points in A x F(T). It can be shown that there exists a homeomorphism between the
resulting topological space and M which maps the equivalence classes of pairs of the form
((zo, 1, 22), (v, €, [)) with 2 # 0 onto the points contained in f (surjectively if v and ¢
are allowed to vary), while it maps those of the form ((xzp,2,0), (v, ¢, f)) with @, # 0
onto the points contained in ¢ (also surjectively if v is allowed to vary) and those ol the
form ((1,0,0), (v, e, f)) onto v.

5 Symmetry

Let us now assumc that, in addition to M and 7', we are also given a group ( of
homeomorphisms v of M which respect T, that is, of homeomorphisms v which sat-
isfy 1(v) € Ty, v(e) € Ty, and y(f) € T for all v € Ty,e € T}, and f € Ty, respectively.
Without loss of generality, we may also assume that G acts properly discontinuously,
that is, that the only homeomorphism v € G with y(v) = v,5(e) = ¢, and (f) = f
forall v € Ty,¢ € Ty and f € T; is the identity (cf. [4]). Clearly, & acts also on the
flag space F(T') and it respects z-neighbours, so it induces automorphisms of the (lag
graph [(T). Moreover, G acts fixed-point free on F(T) provided M is connccted, as
yve f) = (v,e, f) tor some flag (v, ¢, f) € F(T) implies that also the i-neighbours of
(v,e, f) must remain fixed under v, so the same must hold for their j-neighbours aud so
on. So any flag in the connected graph I'(T) must remain fixed which in turn means that
any v € Tp, any e € T}, and any f € 75 remains fixed under 7; so v must be the identity.
Let us now consider the orbit space D(T,G) := G'\ F(T') consisting of all G-orbits of
fiags in F(T). As G respects é-neighbourhood, D(T, G) forms the vertex set of a graph

DT, Q) == (D(T,G);G\ €, G\ &,G\ &)

with, as above, three types ol edges which we get by identifying any two 0-, 1-, or 2-cdges
{F, F} and {F3, I3} from I(T) if and only if there exists some v € G with ~(F) = F,
and, hence, v(¥|) = Fj. The graph D(T,G) is also called the Delaney Grapf, assoviated
with T and G. Clearly, as above, there exists, for any flag orbit G- F and anv ¢ ¢ [0. 1,2},
exactly one flag orbit G - F' with {G'- F,G - F'} € G\ &,

If M is oriented and if any v € G preserves this orientation, I'(T, () inberits the
property of I'(T") of being bipartite. In this case, the é-components of I'(T, (), that is,
the connected components of

I(T,G) = (D(1.G).[ G\ &)

L

remain cycles  now corresponding to G-orbits of vertices (i = 0), edges (4 = 1), or faces
{i=2) and consisting of 2k’ llag-orbits {G- Fy. G- Fy, ..., G- Fype} which are alternatingly
connected in a circular fashion by 1- and 2-edges (i = 0), or 0- and 2-edges (i = 1).
or 0- and 1-edges (2 = 2), while their number 2&" is the quotient of the number 24 of
flags corresponding to the original vertex v, edge e. or flag [, divided by the order of the
suhgroup of G stabilizing ¢, . or [, respectively.
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“onsequently, to construct a tiling 7" of a given manifold M with a pregiven symnnetry
group G, we may first discuss the way G may act on the vertices, edges. and faces of T to
derive corresponding restrictions for the associated Delaney graph I'(T. (7). we may then
try to systematically construct all graphs (D; Ey. Ey, Ey) obeyving these restrictions. and
we may finally try to find all pairs (T, G) with D(T,G) = (D; £y, I5, 12,). In peneral. the
first task is easy, provided we have specified the conditions we require 7" and (' to satisfy
sufficiently clearly. The second task can be done by exhaustive search. sometimes cven
by hand (see below), in more complicated situations by computer.

The third task. finally, depends a bit on the topology of M. While for general M,
complicated questions relating to topological aspects of combinatorial group theory may
have to be studied, the case is relatively easy in case M is simply connected: in this case,
the Delaney graph D(T, G) together with the generally pregiven information ou the
degrees of the vertices and faces of the tiling we want to construct suffice to imply — up to
isomorphism - the uniqueness of the triple (M, 7T, @) in question and even to puarantee
its existence provided the Delaney graph fulfills all our requirements (incliding a munber
of easily specified compatibility requirements, cf. [4]). While the uniqueness result is
relatively easy to prove — it is based on a well-known formula describing the fundamental
group of a CW-complex in terms of its 2-skeleton -, the existence result 1s more difficult
to establish in full generality, but can easily be circumvented in specific cases (again, see
below for a simple and illustrative example) by constructing T and G explicitly.

6 Fowler’s Phantasmagorical Fulleroids

Let us now apply these considerations to the above mentioned fulleroid problem, that is.
let us try to find the Delaney graphs of all spherical tilings T° with proper icosahedral
svmmetry group, cousisting of 60 heptagons and 72 pentagons with exactly three of those
meeting at cach vertex.

Obviously, the 60 heptagons give rise to 60- 14 flags, while the 72 pentagons give rise to
72-10 flags. So, the flag space F(T') of any such tiling consists of exactly 60- 144 72- 10 =
60 - (14 + 12) = 60 - 26 Hags. As the symmetry group I acts fixed-point free on those
flags, the associated Delaney graph D(T, 1) must contain exactly 26 vertices. Moreover,
as the symmetry group I must also act fixed-point free as well as transitively on the set
of heptagons of T, that is on the corresponding set of {0, 1}-components of F(7), the
Delaney graph D(T) must contain exactly one {0, 1}-component of order 14, representing
the heptagons. Similarly, the five-fold symmetries in I must stabilize pentagons, the three-
fold symmetries must stabilize vertices, and the two-fold symmetries must stabilize edges.
In all three cases, all stabilized elements must be symmetry-equivalent to cach other as
the fixed points of the corresponding subgroups of order 5,3, or 2, respectively, of [ are
wellknown to be conjugate to each other. So, in the Delaney graph, we must have exactly
one {0, 1}-component. one {0, 2}-component, and one {1, 2}-component of order 2. while
all the remaining {0, 2}-components must be of order 4. the remaining {1. 2}-components
must be of order 6 and the 10 vertices not contained in the {0, 1}-components of order 2
and 14 must form just one more {0, 1}-component representing those 60 pentagons which
have no internal symmetry. And. finally, as we deal with a proper symmetry group, acting
on an orientable 2-manilold. the Delaney graph must be bipartite.
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B,
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Figure 2d Figure 2¢

In other words, we have to find all connected bipartite graphs
(Vi By, £y, Ey) = (VoUVy; B, By, Ey)

consisting of a set V' of 26 vertices, split into two disjoint subsets ¥ and 17, each of
cardinality 13, and three edge sets By, £, £y C V< V) such that the restriction (V1 . E))
looks like the graph depicted in Fig. (2a), while

(Assertion 0-2) the restriction (V' Eg, £,) consists of one component isomorphic to
the graph depicted in Fig. (2b) and 6 components isomorphic to the graph depicted in
Fig. (2¢)

and

(Assertion 1-2) the graph (V; £y, E») consists of one component isomorphic to the
graph depicted in Fig. (2d) and 4 components isomorphic to the graph depicted in
Fig. (2e).

We will now argue that - up to isomorphism - there are exactly 2 such graphs I'y and
I'y satislying all of our requirements, viz. those depicted in Fig. (3a/b). To this end, we
label the vertices as suggested in Fig. (2a). Next, we observe that — by connectedness
the 2-edge meeting vertex @ must connect Chis vertex with one from the other two {0, 1)
components. So, without loss of generality, we may assume that it either meets verfex e
Or vertex e that is, we have established the 2-edge labelled [a] in Tig. (3a/b). Using
(Assertion 0-2), it follows that another 2-edge, labelled [b]in Fig. (3a/b), wmust connect
ex o with vertex @ or @ respectively.
xt. using (Assertion 1-2), it follows that a 2-edge, labelled [c] iu Fig. (3.a/D), must
conneel the vertices @ and o {or @ and 0 respectively) which in tun, nsing
(Assertion 0-2) again, implics the existenee of still another 2-edge, labelled F” connecting
o anc @ {or o and @ respectively).

Now. using (Assertion 1-2) again, we observe that the 2-edges meeting (3) anl 9

vert

{or @ and @ respectively) must connect these two vertices with a pair ol vertices
connected by a l-edge. In the first case (Fig. 3a), this cannot he the pan o(-'\ + Ay
this would contradict connectedness, so nsing again the freedom of labelling — we may
assume that it 1s the pair 0@ leading to the 2-edges E Similarly, in the

second case (Fig. 3b). it can be neither of the pairs o and @.. @ and Q:D or 0 and
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Figure 3a
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@: Connecting @ and @ with the first (or the last) pair would - by (Assertion 0-2)

lead a further 2-cdge connecting @ and @ (or o and @, respectively) which would
enforce the two vertices @ and 0 (or @ and 0) to be connected by 2-edges with
a pair of vertices connected by a 0-edge in view of (Assertion 0-2) and. simultancously,
connected by a l-edge in view of (Assertion 1-2), which is impossible. Connecting instead
@ and @ with w and ®, (Assertion 0-2) would force us to connect e with @
and @ with 0 by 2-cdges, contradicting connectedness as well as the fact that (here
is only one {1, 2}-component consisting of 2 vertices, ouly. So, - using again the freedom
of labelling - we may assume without loss of generality that the two 2-edges eimanating
at. @ and ° in Fig. 3a connect these two vertices with the pair a,@, while the two
2-edges emanating at @ and @ in Fig. 3b connect these two vertices with the pair
°’®’ leading in both cases to the 2-edges . Using (Assertion 0-2) once more,
we get two more 2-edges, labelled @ and |/

and

In the situation depicted in Fig. 3a, this in turn forces us to connect @ and 0
by a 2-edge labelled E ando and @ by a 2-edge labelled | 7|, using first (Assertion
1-2) and then (Assertion 0-2). As we still have to place a {1, 2}-component of order 2
somewhere into Fig. 3a and as the remaining two pairs of vertices connected by a I-edge
are symmetrically placed with respect to all the 0- and 1-edges and the 2-edges labelled [a]
to, we may  without loss of generality - now connect the vertices @ and @ by the
next 2-edge labelled | £ | which then enforces us to place the remaining 2-edges |/ | and [7n]
as depicted in Fig. 3a, once again using (Assertion 0-2) and (Assertion 1-2) consecutively
The resulting structure obviously fulfills all of our requirements.

In the situation depicted in Fig. 3b, we now consider where to place the 2-edge con-
tained in the unique {1.2}-component of order 2. We cannot counect o and @ by a
2-edge as this would force us to connect also the vertices and o by a 2-edge. pro-
ducing a {1, 2}-component encompassing at least 8 vertices. So, by symmetry. we ave left
with the possibility of counecting o and @ by the next 2-edge labelled m Now, using
(Assertion 0-2) and (Asscrtion 1-2) alternatingly, we find ourselves compelled to place the
remaining 2-edges lﬂ, . and as depicted in Fig. 3b leading to the unigue second
alternative for a graph satisfying all of our requirements.

In other words, we have established

Theorem 1 There exist — up to isomorphisms - exactly 2 graphs Uy and 'y which are
potential Delaney graphs of spherical tilings exhibiting proper icosahedral symametry. and
consisting of 72 pentagons and 60 heptagons with ceactly 3 of them meeting af cach verter,
namely those depicted in Fig. 3a/b.

It follows from the casier parts of the theory explained above that, consequently. theve
are at most two such spherical tilings, and it follows from the more diffienlt parts of that
theory that exactly two such spherical tilings must exist. Fortunately, we do uot need the
more difficult part as the spherical tilings constructed by means of that theory (and the
computer programs based on it, c[. [1}) can be inspected in Fig. 1, giving ample evidence
of their existence. So, altogether we can now state
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Theorem 2 There are exactly two distinet potential fulleroid isomers weth icosalidrol
symnetry comprising 260 carbon atoms which exclusively form pentagonal and heplagonal
eyeles.

7 Flags and the Barycentric Subdivision

There is a simple geometric interpretation of the space F(T) of flags of T (cf. Fig. 4):
Recall that, for any tiling T, one can construct ancther tiling 7", called a haryeentric
subdivigion of T, by

(i) choosing one point p, € e for each edge e € 17, cutling cach edge ¢ into two edges
¢ and e, this way, and one point py € f for each f € T3,

(ii) choosing homeomorphic imbeddings
Gy [0,1] = f
and B
Gen (0,1 = f
for each pair (v, f) and (e, f) with v € F and ¢ € T so that
Lp{v'”(O) =8y W(e,]}(n) = Pe-
and
wren(l) = pen(l) =py
in such a way that, restricted to (0, 1), all the images
ke, = e ((0.1))
and
K gy = 0 ((0,1))
are disjoint, and then
(iii) putting

T=ToU{p.|cen}ulps| fe T}
1= {hen | ce T, f€Tse € YU kpn |veTnfeDne Flule,e|cenh

and defining T3 as the connected components of the complement of 7w |
Pl
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1t is easily seen that

o cach face f'of T} is a (topological) triangle, i.e. a 3-gon, its boundary containing
exactly one vertex v = ¢(f') from Ty, one vertex of the form p, for some edge
e =e(f") € T\ and one vertex of the form py for some face f = f([") € 73

o f'is completely determined by the triple w(f), e(f"), and f([")

e and given a triple (v, e, f), there exists a face f' € T3 in the barycentric subdivision
T of T with v = v(f'),e = e(f"), and [ = f(f') il and only if the tiple (0,c, f)
forms a flag. In other words, the flags of T correspond in a one-to-one fashion 1o
the (triangular) faces of the barycentric subdivision 77 of T. It is also casy to sce.
that two flags are 0- (1-, or 2-)neighbours of each other if and only if the closures
of the corresponding faces f]. f] of T” share the edge of 7" connecting the vertices
Pe(s) = Petyy and pyipyy = pyipy (or wlfi) = w(f) and pregyy = prepy. ore(fi) = v(f3)
and pe(gry = pegy), Tespectively).

This simple geometric interpretation of F(T') is rather useful if one wants to visualize
the constructions that arc being performed in reference to F(7T') and the unicity results
stated in terms of F(T') later on.

Figure 4
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