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Abstract

A leapfrog polyhedron is constructed by capping a parent polyhedron on every face and
taking the dual of the result. General relationships between the symmetries spanned by
vertices, edges and faces of parent and leapfrog are derived and extended to arbitrarily
high local angular momentum. Symmetry relationships between leapfrogs of dual poly-
hedra are found. Leapfrogging the dual of a polyhedron is equivalent to truncating the
original. The eigenvalue spectrum of a truncated trivalent polyhedron is given as a function
of the spectrum of the parent, and the consequences for electronic structure of polyhedral
carbon cages are discussed in terms of localised and Clar models of # bonding. All trun-
cated fullerenes are closed-shell in Hiickel theory, each with the same formal 7 electronic
configuration as the leapfrog of the same parent, though unlikely to be either sterically or

electronically optimal.
1. Introduction

The leapfrog transformation was first defined in the context of the theoretical
chemistry of fullerenes as a way of generating the structures of larger members of the
fullerene series from smaller parents [1-3]. A fullerene [4] is a trivalent pseudospherical
polyhedral cage consisting of n carbon atoms linked in 12 pentagonal and (n/2 — 10)
hexagonal rings. The leapfrog process of omnicapping followed by taking the dual of the
polyhedron results in the conversion of a fullerene C,, to a fullerene Cy,. (Each vertex of
the parent generates a new hexagonal face in the leapfrog, each face and edge of the parent
survives in rotated form in the leapfrog.) The operation is of chemical interest [2] because
it yields a molecule with a properly closed 7 shell in the qualitative Hiickel description of
electronic structure used for these unsaturated all-carbon systems. This property can be
given a mathematical description as follows. Let the eigenvalues A; of the adjacency matrix
of a polyhedron I” be arranged in descending order. Then, if the polyhedron is a leapfrog

fullerene P =Ch, its eigenvalue spectrum is not only closed-shell (Auja # Aujoqr) but
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also properly closed (/2 > 0; Ay 241 < 0), corresponding in Hiickel theory to occupation
of all bonding molecular orbitals by the n 7 electrons of the cage. More generally, if P
is the leapfrog of any trivalent polyhedron then its spectrum is either closed or properly
closed [5]. Symmetry aspects of fullerene leapfrogging have been studied: the permutation
representations of the edges, faces and vertices of the leapfrog are all predictable from
those of the parent [6].

More generally, any polyhedron can be leapfrogged and the resulting polyhedron
is always trivalent. This fact is used in the present note to recast the symmetry relations
in a form that allows prediction of permutation representations for the leapfrog of any
parent polyhedron. Relations connecting the properties of leapfrogs of dual polyhedra,
and eigenvalue theorems for truncations of trivalent polyhedra are also derived. All triva-
lent polyhedra are of at least potential chemical interest as candidates for stable carbon

frameworks.
2. Leapfrogging a general polyhedron

Define three polyhedra: P, the parent, O its omnicap, and L its leapfrog (i.e. the
dual of Q). The numbers of vertices, faces and edges of these polyhedra are vp, fp, ¢p,
vo, fo, o, vi, fi and eg, respectively. The definitions of O and L imply

vo = vp + fp; fo = 2ep; eo = 3ep

(1)

v = fo = 2ep; fr=vo=vp+fp=cp+2 ep = co = 3ep
L is trivalent by construction, and vy, fr, e areindeed related as for a trivalent polyhedron

(er = (3/2)ve; fo = (1/2)vy +2). If P is also trivalent, then leapfrogging triples the

number of vertices as vy = 3vp when vp = (3/2)ep.

Now define permutation representations I's(v, P), I'o(f, P) and I'y(c, P) for the
sets of components of the polyhedra P and L. The object is to derive the representations

appropriate to L from those for P. P, O and L all belong to the same point group.

The faces of the leapfrog have centres coinciding with the face centres and the

vertices of the parent:

Fu(fv L) — Fo'(fv P) + F”(v, P) (2)

Every edge of P gives rise to a perpendicular edge in L [3] and together these

derived edges exhaust the vertices of L, so that the permutation representation of the
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where I'r and I'p = 't x I'¢ are the translational and rotational representations, respec-

tively. Equations (2), (5) and (6) generalise previous expressions which were derived for

trivalent parent polyhedra [6].
3. Leapfrogs of dual polyhedra

Consider four polyhedra: P, its dual P, its leapfrog L(P) and the leapfrog of its
dual L(P). Leapfrogging can be described as omnicapping followed by taking the dual, as
above, or as omnitruncation of the dual. It follows from the latter description that L{P)
and L(P) are related as truncations of a dual pair of polyhedra, since L{ P) is the truncation
of P and L(P) of P. Thus, for example, the leapfrog of the Platonic dodecahedron is the
truncated icosahedron and the leapfrog of the icosahedron is the truncated dodecahedron.
The two polyhedra L(P) and L(P) are equal in respect of vertex, face and edge counts, as

shown by the symmetry of vz, fr and ez in (1) under exchange of vp and fp.

The permutation representations of the structural components of P and P, L(P)

and L(P) are also related. For two dual polyhedra we have

(v, P) = ro’(f,ﬁ),



















































