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Molecular Topology 21. Wiener Index of Dendrimers
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Abstract: General formulas for the calculation of the Wiener index, W, in regular and
irregular dendrimers are proposed. They are derived on the basis of Wiener's algorithm [I]

by using progressive vertex degrees and orbit numbers [2a] as parameters.

1. Introduction.

The Wiener index, W, [1] is the sum of all topological distances in a graph, G.
Hosoya [3] gave the actually well known relation for the calculation of this ndex, as the half
sum of all entries in the distance D matrix

W= 1/2 Zi Z, du (1)

Other formulas relate W with the distance sums, DS |, [4,5] or with the distance
degrees, a© i ,[2b,6,7] in graph

W=12Z;D8; =12 Z; Z, (@9; *e) Q)
or also with the Laplacian eigenvalues, X; [8-10]

N
W=N Xi/x, 3

i=2 !
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Several algorithms [9,11-21] for the evaluation of W were developed. Wiener itself
calculated W [1] as the sum of contributions, Wy, , of all edges in G, which, in acyclic

structures, can be obtained by
W=2a Way =Za (Ni*N)) )

where N and Nj denote the number of vertices in the fragments f; and fj resulted by
cutting the edge (ij) (see also [5,14,15]).

Among the various modifications of W [7,14,22-47], the Schultz index [31-41] and
the hyper-Wiener index [42-46] are the most important.

Schultz [33-39] has defined their molecular topological index, MTT | (known in the
literature as the Schultz index) by

N
MTI = Z[V(A+D)]i 5)
i=1

where A denotes the adjacency matrix and V is the vertex-valence vector. Gutman [32]

decomposed the Schultz index as follows

N 2 N N
MTI=2(v,) +1/22 2.(v.+v D ()
i=1 ! i1 j=1 1M

the second term being a vertex-valence-weighted Wiener index. Recall that Ivanciuc [27] and
more recently Dobrynin [28] proposed invariants similar with the second term i eq (6). The
relatedness of MTT with W is quite obvious.

Randic’ [42] introduced the so-called hyper-Wiener index, R, as

peG
R = N *N 7
:L: 1p 2p )
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where Nip denotes the number of vertices in the one of the two fragments which end a given
path , p, in a tree. The product equals the number of all paths which include the selected path.

The index R can be expressed as the half sum of the Wiener matrix entries, Wy [43]
R:ll’ZZi Z-‘wij 3)

Very recently, Klem, Lukovits and Gutman [46] extended the definition of R to

account for cycle-containing structures :

R:l/ZZ(d:+dij):(D2+W).’2 )

i<i

The above formula relates the R index with the W index and the second moment of

distance, 2. A remark needs the Mohar index, (TT); , given by
(TI) =2 log (M/N)W (10)

which is also related with W (VI and N being the number of edges and vertices in graph,
respectively) [ 8,10,47].

The Wiener index is "seen" as an approximate measure of the expansiveness of
graphs (i.e. aliphatic hydrocarbons). It was the first structural parameter found to give good
correlations with the thermodynamic properties of saturated hydrocarbons [1,48,49]. Since
then, correlations of W with various physico-chemical [50,51] and biological [52-56]
properties of molecules have been studied.

A recent review conceming the Wiener index is due to Gutman ef al. [5b].

In this paper general formulas for evaluating the Wiener index in dendrimers are

presented.
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2. Wiener index in regular dendrimers

Dendrimers are hyperbranched molecules, synthesised by repeatable steps, either by
adding branching blocks around a central core (thus obtaining a new, larger orbit or
generation - the "divergent growth"” approach [57-59] ), or by building large branched blocks
starting from the periphery and then attaching them to the core (the "convergent growth"
approach [60-63]). These ngorously tailored structures are mainly organic compounds but
morganic components were also used [64-67].They show spherical shape, which can be
functionalized[68-71], thus resulting in new interesting properties. Reviews in the field are
available [72,73].

Some definitions in dendrimer topology are needed:

The vertices of a dendrimer, except the external end points, are considered as branching
points. The number of edges emerging from each branching point is called progressive degree,
P [2a] (i.e. the edges which enlarge the number of points of a newly added orbit). It equals to
the classical degree, k, minus one: p = K - 1. If all the branching points have the same
degree, the dendrimer is called regular. Otherwise it is irregular.

A dendrimer is called homogeneous if all its radial chains (i.e. the chains starting from
the core and ending in an external point) have the same length [72].

It is well known [74] that any tree has either a monocenter or a dicenter (i.e. two points
joined by an edge). Accordingly, the dendrimers are said monocentric and dicentric,
respectively. Examples are given in the FIGURE. The numbering of orbits (gencrations
[2a,72]) starts with zero for the core and ends with r, which equals the radius of the dendrimer
(i.e. the number of edges from the core to the external nodes).

Within this paper, a dendrimer is denoted by the following symbols:
D

rp for monocentric, regular dendrimer, of generation r and progressive degree p;
DD,,, for the corresponding dicentric regular dendrimer;
[Dr,p, for monocentric, irregular dendrimer, of generation I and progressive degrees

P, varying along the radial chain from pg to Pr.1 (Pr equalling zero, by definition);

[DD,-,],, for the corresponding irregular dicentric dendrimer.
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(a) (a)
D,, bp,,
(b) o
Ds! {3, 1)'3l 1‘ 2) DDS} {2! 113]' 1" 2)

FIGURE. Regular { a ) and irregular ( b } monocentric and
the corresponding dicentric, (a’' ) and (b’ ), dendrimers
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Notice that pp = Ko for a monocentric irregular dendrimer, while for a dicentric one,
Po = Kg - 1, where kg and Py are the core classical and progressive degrees, respectively.

A wedge or a "subdendrimer" may result either by breaking an edge in a dendrimer, or
by a step of "convergent" synthesis. If the cut edge ends at the core, the wedge is called
maximal. The vertices of a wedge have the same degree as the corresponding ones in the whole

dendrimer, except the cut point, whose degree is smaller by one.

Very recently, Gutman and a Chinese group [75] derived a special formula for the
evaluation of the Wiener index i regular dendrimers. They used a combinatorial relationship
applicable on any tree, which takes into account the decreasing ¢ffect of branching nodes on
the magnitude of W, versus the path with the same number of vertices, N. However, the
authors reported only formulas for monocentric regular (and the corresponding maximal

wedge) dendrimers. In our notation, these are as follows:
W(D,, ) ={ [r(p+1)* - 2(r+1)(p+1)° + (p#1) |p™ +2(p+1)’ p" - (p+1)} * (p-1)°  (11)
W(Wedey) = { [(r+2)(p+1) - 20+1)]p™"  + [r(p+1) - 20+ D)]p™ "} * (p-1)° 12

where Wed,, means a dendrimer isomorphic with the maximal wedge in the dendrimer D, p.
We start with the observation that, in eq (4), Nj = N - N, so that a single parameter,

Ni, needs to be calculated. The enumeration of points within the cut subgraphs f; may be
accomplished by the relationship

Ng= i.“(r_s) (13)

where I denotes the maximal orbit number in the dendrimer, 8 is the number of actual orbit

and | is the number orbit of the cut point i . The number of all vertices in the dendrimer is

given by
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ro s Los r
N )=(-zp +22p =22p -2 (14)
P s=0 s=0

where Z =1 for a monocentric and Z =0 for a dicentric dendrimer, respectively.
Now, we can calculate W, as well as their sum over all edges, cf. eq (4), which is

just the Wiener index, W.
Wiener index in regular dendrimers:

2 1- L -1
wo_ )=a-a0n e e Ve Ep TY
’ s=1

(N-NON_ (9

z (l—z)ﬁ (s—-1)
WOrb® )= (p+1) (2p) P (N-NON (1)
- (s—1)
WiWed, = Zp" -, a7
W(Orb(Wed VNN N 8
©rb(Wed_ ))=p (N-N)N_ (18)
2 z (1-2z)
W p):(l—z)(NlZ) +(p+1) (2p) *W(Wed ) 19)

W (Orb(Dy5)) in eq (16) means the contribution of orbit § to the W (D, ) (i.e. the Wiener
index for the whole dendrimer) whereas W(Orb(Wedrps)), in eq (18), represents the
comresponding contribution to the W(Wed,,, ). One can see that the global index W(D,, ) can
be expressed as a function of wedge contribution, W(Wed,p ), eq (19). The product
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(p+1)* (2p)™?  represents the "wedge factor”, with the meaning of core progressive
degree. The parameter Z enables the use of egs (14) through (19) both for monocentric and
dicentric regular dendrimers.

By evaluating the sums in eq (15) results in two analytical expressions: one for Z = 1.
identical with eq (11) (i.e. the relationship for evaluating the Wiener index for the monocentric
dendrimers) and another one for z = (), which accounts for the Wiener index in dicentric

dendrimers. The last one is as follows:

(2r+2) (r+1) 2
W(Dorp;nm:[ 4p (p-Dr+(p-1p =

& (20)

r +1) -
-2p(p - 1)(3p -D](p-1)

The other relationships concerning the regular dendrimers are proposed as exercises for

the reader.

3. Wiener index in irregular dendrimers

In irregular dendrimers, the power parameter p° has to be transformed into the
product Il ps ,since in such dendrimers the progressive degree can change with the orbit,

Ps being the progressive degree of orbit § . The population of the fragment f; is now

r S
N.=1+2 [Ip @
L s=i v=i ¥

Thus, the formulas for evaluating W in irregular dendrimer are as follows:
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Wiener index in irregular dendrimers:

r s-1
NaD }=(z—z)(1+§l ey (22)
wap ) (-2 +@2-2) Z(H PIN-NON_ (23)
s=1 v=0
W(Orb(D, )= (zfz)(l'[p JON-NON (24)
s v=_0
WO, I=arE, ST JEN-NON_ @25)
s=1 v=0
-1
W(Orb(IWed )) 1/p, (I'[ P IN-NON_ (26)
v=0
2
W(IDr,ps)=(l-z)(N12) +(2Az)po”'W(l\\’edr’p ) 27

with (2-Z)po being the wedge factor and the remaining notations as in the case of regular
dendrimers.

The Wiener index for a dendrimer isomorphic with the maximal wedge can be
calculated either by the formula for W(IDyp. ), eq (23), or by using that for W(IWed rphs
(multiplied by Po ), eq (25), mentioning that in both cases the orbit number § refers to the

wedge orbits. As an example, the formula for the well known binary tree (BT) is given

W(BT) = Z(HP )(N N )N = 22 (N-N )N (28)
s=1 v=0 s=1
where
N= Zzs=2(r+1)—1 (29

s=0
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iz(r—v): 2(1’—54—[)_l

N = (30)
s

v=s
From eqs (28), (29) and (30) , after a lengthy calculation, results in a formula which is

identical with that obtained by the group of Gutman [75]:

(r+1) (2Zr+2)
W(BT) = (r +4)2 +(r-2)2 31)

A last remark: n-alkanes (Py ) can be viewed as regular dendrimers,

with p = 1. In this case, eq (15) becomes

2 r
WP _)=(1-2)(N/2) +22(N-N )N (32)
N s—1 s 8

N :Zp‘r_s)zrvs+l (33)

and taking into account that r = (N - (2-2)) / 2, eq (32) becomes

2 x 2 2
W(PN)=(1—z](N1’2) +lIZZ(N —(2s—z) ) (34)
s=1

The evaluation of sums leads to a formula which is independent of Z

’ o [N+1) .
WP ) =1/6(N =Ny =| (35)

and which is a well known result (see [75]).
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