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Abstract

In a recent paper [MATCH 30, 243 (1994)] Tiirker pointed out
that for g = 0.5 the expression g+2mn is a lower bound for the
total m-electron energy of alternant hydrocarbons (as calculated
within the HMO approximation); n = number of C-atoms, m =
number of C-C bonds. We now deduce better lower bounds of
the same type, in particular one with g = 442/9 = 0.628539... .

Introduction

In this paper we are concemned with the total n-electron energy (E) as
calculated within the framework of the simple Hiickel molecular orbital
(HMO) approximation. Upper and lower bounds for E were first
investigated by Bernard McClelland [1] and eventually became a traditional
field of research in the theory of total m-electron energy [2]. Recently
Tiirker [3] proposed a lower bound for E, valid for all alternant
hydrocarbons:

gv2mn < E (1)
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in which g = 1/2. In formula (1), n and m stand for the number of vertices
and edges, respectively, of the molecular graph [4] (= the number of carbon
atoms and carbon-carbon bonds, respectively, of the corresponding
conjugated hydrocarbon).

If one thinks of improving Tiirker's bound [3], i.e., finding g greater
than 0.5, for which inequality (1) is still valid, then one first should notice
that because of McClelland's upper bound [1,2] ¥2mn = E , g cannot
exceed unity.

Some improvements of Tiirker's bound were offered by one of the
present authors [5]. In particular, in [5] it was shown that for alternant
hydrocarbons with at least n carbon-atoms, for which the condition

n>n3+2q )
is obeyed, the inequality (1) holds for g = ¥/(2n - 2)/(5n) . In formula (2), q
denotes the number of quadrangles (= four-membered cycles) and nj is the
number of trivalent vertices in the molecular graph.

In this paper we communicate some further improvements of

Tiirker's lower bound.

Theory

The starting point in our consideration is the inequality

which was deduced in [6], and which holds for all alternant hydrocarbons.
In formula (3), D2 is the sum of the squares of the vertex degrees; as before
q counts the quadrangles. If we denote by ny , k = 1,2,3, the number of
vertices in the molecular graph whose degree is equal to k, then



np+n+n3=n 4)
n+2n+3n3=2m (5)
ny+4n+9n3=Dp (6)

By comparing (1) and (3) it is immediately seen that (1) will certainly be
satisfied if

‘\/8m3,’(2D2-2m+ 8q 2g+/2mn
By means of the relations (4)-(6), the above inequality is transformed into

x2/2g) + 2 y2/g2 + (1/g2 - 5/2) x + g2 - Ty + 2 x y/g? +
1/(2g2) - 1/2 =2 4g/n @)

where x =np/nand y =n3/n.

The number q of quadrangles in the graph, may be related to x and y
in various ways. Generally one may use

4gm<ax+Py i.e. 4g<any+fn3. ®)
Then the inequality (7) holds whenever

¥20 ©

v =x2/(2g2) + 2y2/g2 + (/g2 -5/2-a) x + (2/g2-T-B) y +
2xy/g2 + 1/2gD) - 112 . (10)

Hence, (9) is a sufficient condition for the validity of (1).

It is easy to see that the condition (9) is satisfied forx =y =0and g
< 1. If it is violated for any other value of x and y (for some appropriately
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chosen g), then v, Eq. (10), must vanish for some non-zero values of x and
y.

Thus, if the condition (9) is violated by some molecular graphs, then
it must be y=0 forsome x,yand g, suchthat0<x<1,0<y<1land0
< g< 1. Fory=0, the functional dependence between x and y may be
considered as a quadratic function in y. The respective discriminant is then

D=4x2+B-20)/g2-46+P)/g2+(T+P)? . (11)
If D < 0, the equality y = O has no real zeros. Then the inequality (9) holds

for all x and y, and accordingly holds for all graphs of the kind we are
considering here.

When (2 + 3 - 2a) 2 0, then the worst condition on the right-hand
side of (11) is x = 0 and one obtains

g<246+B/(7+PB) for 20<P+2 . (12)

When (2 + B - 2a) < 0, the worst condition on the right-hand side is x = 1,
which leads to

g<2+8+2B-2a/(7+P) for B+2<20<2B+8 . (13)

The best possible lower bound for E will be, of course, obtained if one
chooses g so that it is equal to the right-hand side of (12) or (13).

In order to determine g (by means of (12) and (13)) we have to find
pertinent values for the parameters « and B, Eq. (8). This, on the other
hand, depends on the actual structure of the (molecular) graphs under
consideration.
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In the subsequent considerations a third, auxiliary, class ¢ will play
an important role. % consists of those graphs from the class .o which have
the property that all their edges belong to (at least oné) quadrangle.

We first determine the elements of € A constructive proof yields the
following result:

The class ¢ contains the ladders Ly, n = 1,2,3,4,..., the cyclic ladders
CLy, n = 3,5,7,9,..., the graphs Gy , Gy , G3 , G4 and G5 , and only these
graphs, see Fig. 1. With the exception of Gs , all elements of ¥are planar
and thus belong to class 4.

G, G, G, G

Gs

Fig. 1. The elements of the class €
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A Simple Chemical Application

In the molecules of conjugated hydrocarbons, one carbon atom
cannot belong to more than two four-membered rings, because otherwise a
drastic violation from planarity would occur, accompanied by an extremely
large steric strain. (As a matter of fact, even pairs of fused four-membered
rings - when some carbon atoms are shared by two such rings - occur in the
chemistry of nonbenzenoid conjugated molecules only in exceptional cases
[7-10].) Furthermore, in conjugated hydrocarbons, CH-groups always
belong to exactly one ring.

Translated into the language of chemical graph theory [4] the above
means that trivalent vertices of a molecular graph belong to at most two
quadrangles, whereas bivalent vertices belong to at most one quadrangle.
This, in turn, implies that in Eq. (8) we may choose . =1 and B =2 . For
this choice of the parameters o and (B, Eq. (12) is applicable and we
straightforwardly calculate

g =442/9 =0.628539... . (14)

Hence we reach our first main result: For all alternant conjugated
hydrocarbons, the HMO total n-electron energy is bounded from below by
the expression g/2mn, where g is given by Eq. (14).

Extensions to More General Molecular Graphs

In this section we derive lower bounds of the type (1) for two classes
of graphs: o and %, both embracing the molecular graphs usually
considered in chemical applications. Class s consists of connected bipartite
graphs whose maximal vertex degree does not exceed three. Class S is a
subset of o, containing only those graphs which are planar (in the graph
theoretical sense [11]).
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One should observe that the "exceptional" graph Gy is just the
complete bipartite graph on 3+3 vertices, K3 3. According to Kuratowski's
theorem [11] this graph is non-planar. Because all the vertices of G5 are
trivalent, G5 cannot be contained as subgraph in any of the graphs from .«

In order to obtain a value for g, such that the inequality (1) is
satisfied for all graphs from .= we first have to find some pertinent values
for o and [, for which the inequality (8) holds, and then to apply Egs. (12)
or (13). Our strategy will be the following:

First observe that for graphs without quadrangles (q = 0) inequality
(8) is satisfied for any positive o and B. Therefore we may restrict our
considerations to those graphs from . which contain at least one
quadrangle.

Let G be such a graph. Denote by nq(G) and n34(G) the number of
divalent and trivalent vertices, respectively, of G, lying on (at least one)
quadrangle. Evidently, ngq(G) < nz(G) and n34(G) < n3(G). We intend to
choose o and P so that o < B, that B is as small as possible and that

4 q(G) < 0 ngg(G) + P n3q(G) (15)

is satisfied. Then, of course, (8) will be satisfied too. Such a choice can
always be dene.

Construct now a graph G’ by deleting from G all edges and all
vertices that do not belong to quadrangles. Then G’ is a graph whose all
components are from €. Furthermore, q(G”) = q(G), nzq(G’) + n34(G’) =
n24(G) + n3q(G) and nz¢(G’) 2 ngq(G). In view of the fact that a < 3, we
immediately see that if

4 q(G”) < anyg(G) + P n3q(G") (16)
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is satisfied, then also (15) is satisfied. Let the components of G’ be denoted
by G}, G5, ..., Gy . Then (16) is satisfied whenever

4 q(G] ) S amq(G} ) + P n3q(G] )

is satisfied for all i = 1,2,...,p. Bearing in mind that all the graphs G;" , i =

1,2,...,p, belong to the class ¥, but that none of them can be isomorphic to
Gs, we arrive at the following important conclusion:

Let o. and B be chosen so that the inequality (8) holds for all graphs
from the class €(except, perhaps, for Gs). Let the respective value of g be
calculated by means of Eqs. (12) or (13). Then the inequality (1) holds for
all graphs from the class s (except, perhaps, for Gs).

We thus see that the correctness of a choice of o and B needs to be
checked only on the few graphs from the class &

If we choose o =+6+1/2,B=2J6 -1, then application of Eq.
(13) gives

g = 1//3 =0.577350... . (17)

The above values for o and B were adjusted so that for the Kuratowski
graph Gs the relation (1) is obeyed in the form of an equality. By direct
testing we establish that for all other graphs from the class %, the inequality
(8) is satisfied. We thus conclude: For g given by Eq. (17), the inequality
(1) holds for all graphs from the class o

Furthermore, the above lower bound is the best possible because in
the case of the Kuratowski graph it reduces to an equality.

Using an analogous way of reasoning, we establish that the choice o
= 14/5 , B = 18/5 makes that Eq. (8) is satisfied for all planar molecular
graphs. For this choice,
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g = ~/4800/14045 = 0.584601... (18)

and we arrive at the following result: For g given by Eq. (18), the
inequality (1) holds for all graphs from the class 3.

Another Chemical Application: Alternant
Hydrocarbons without Four-Membered Rings

As it is well known, the great majority of conjugated systems known
at present are devoid of four-membered rings. For them we obtain further
improvements for the lower bound (1). Namely, for such conjugated
systems we may select o = f = 0 and then from (12),

g =26/ 7=0.699854... . (19)

In the case of benzenoid system we further have x + y = 1 and then from

Eq. (10),
g = 443/ 9 = 0.769800... . (20)

This result was previously obtained in [6], using a different way of
reasoning. Finally, for cubic bipartite graph without quadrangles (which,
for instance, are the molecular graphs of toroidal polyhexes [12], x =
0,y=1and o = B =0. This by means of Eg. (10) yields:

g =315 =0.774597... . 21)

By comparing Egs. (14), (19), (20) and (21) we see that for
conjugated systems with six- and without four-membered rings, the value of
g increases. This is in harmony with the empirical facts about
destabilization by 4-membered rings and stabilization by 6-membered ones.
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The above results can be summarized as follows: For alternant
conjugated hydrocarbons without four-membered rings, the HMO total n-
electron energy is bounded from below by the expression gJ2mn , where g
is given by Eq. (19). For benzenoid hydrocarbons, the same holds for g

being given by Eq. (20). For toroidal polyhexes the same holds for g being
given by Eq. (21).

These bounds, valid for special classes of conjugated hydrocarbons,
turn out to be significantly better than the general lower bound (1)&(14).
This latter bound, on the other hand, is also significantly better than what
was recently proposed by Tiirker [3].
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