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Abstract

It is demonstrated that the algebraic structure count (A) of
a class of pericondensed nonbenzenoid alternant hydrocarbons
x-n , called multiple phenylenes, conforms to the recursion
relation: A{X_ } = (n#1) A{X _ } - [n°/4} ALX__ } with
m,n m-1,n m-2,n
initial conditions A{X_ } =1 and A{X, } = n+#1 , n > 0.
o,n 1,n

Introduction

The systematic study of the algebraic structure count (ASC) [1] of
nonbenzenoid [2] alternant [3] conjugated hydrocarbons started relatively
recently [4-9]. The first results along these lines were obtained for cata-
condensed molecules [4,5,7], whereas the finding of the ASC-values of peri-
condensed systems turned out to be a much harder problem. (Recall that a
polycyclic conjugated molecule is said to be pericondensed if at least one
of its atoms is shared by three rings; otherwise the molecule is catacon-
densed [10]).

In a recent work [9] we examined a class of pericondensed nonbenzenoid
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conjugated systems which we named "multiple phenylenes". Their structure is
shown in Fig. 1, where also the meaning of the parameters m and n is indi-

cated.

m-1,n

Fig. 1

The graph depicted in Fig. 1 1s a standard molecular graph (or more
precisely: a skeleton or hydrogen-depleted graph). Its vertices represent
carbon atoms, and two vertices are adjacent if the respective carbon atoms
are chemically bonded; the type of the chemlcal bond (single, double or
intermediate) is immaterial for the adjacency relation. As usual, hydrogen
atoms are not represented by vertices. The vertices of a molecular .graph
of a fully conjugated hydrocarbon are of degree one, two or three. In the
case of the graph Xh.n only vertices of degree two and three are encounter-
ed. Vertices of degree three represent carbon atoms to which no hydrogen is

attached; vertices of degree two represent carbon atoms to which a hydrogen
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atom is attached. More details on the construction and properties of mole-
cular graphs can be found elsewhere [10-12].

From Fig.1 is seen that the multiple phenylene denoted by Xn.n consists
of m x n hexagons, arranged in m rows and n columns. If m = 1 , then Xm"
is the linear [nlphenylene, namely the linear phenylene with n hexagons. If
m> 1, then every row of Xn'n 1s Just a linear [n]phenylene fragment. In
what follows, Instead of "linear [nlphenylene" we will simply say "phenyl-
ene”.

In [9] we arrived at a recursion relation and a general expression for

the algebraic structure count of Xn N’ namely at

MX )= 0+ 1) MK ) - [n'a] M, ) (1)
and
Mx Y= m |[PrlrR)T et - R )
m,n 2 2 )

where R = v2n+1 if n is even and R = v2n+Z if n is odd. Recall that 1_n2/4J
=n’/4 if n is even, and |n°/4] = (n®-1)/4 if n is odd.

Formula (2} follows from (1) under the initial conditions A(Xo’n} =1
and A{Xl'“) = n+l .

Here and later by A{X} is denoted the algebraic structure count of the
conjugated system X. Without loss of generality we may assume that X stands
for the molecular graph.

Whereas (2) is a stralghtforward consequence of (1), no proof of (1)
was given in [9]. The aim of this paper is to fill this gap and to deduce
the following:

Theorem 1. Formula (1) holds for all m 2 2 and n > 0, and its initial
conditions are MXD n} =1 and A{X1 } = n+1
» a0
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In order to prove Theorem 1 we need some preparations.

Some auxiliary considerations

First recall [1] that the ASC-concept is based on the possibility to
assoclate a certain "parity" to every Kekulé structure. Then ASC is equal
to the difference between the number of "even" and "odd" Kekulé structures.
Two Kekulé structures are of equal (opposite) parity if one is obtained
from the other by moving an odd (even) number of double bonds along one
cycle. The parity of Kekulé structures has, however, a deeper algebraic
foundation; the readers interested in this long-established details should
consult the references quoted [1]. Conventionally, the parity of the Kekulé
structures is chosen so that the number of even structures is greater than
or equal to the number of odd structures. (Then ASC is a posltive- or zero-
valued quantity.)

Consider now a conjugated system having a four-membered ring. Its
Kekulé structures can be divided into five groups (A, B, C, D & E), depend-
ing on the arrangement of the double bonds in and around the respective

four-membered ring, see Fig. 2.

OO X

Fig. 2



-51-

The Kekulé structures of type A and B differ only in the position of two
double bonds within one cycle and are therefore of opposite parity. Hence,
they cancel out when ASC is computed. Consequently, in the considerations
concerned with ASC, Kekulé structures of the type A and B need not at all
be taken into account.

In order that this paper be self-contained we prove again a result
from [4]. Besides, parts of the proof of Lemma 1 are used also in the sub-

sequent deliberations.
Lemma 1. For the linear [nlphenylene, A{X! n} =n+1

Proof. Consider only those Kekulé structures of x1,n in which there are no
arrangements of double bonds of the type A or B, see Fig. 2. Observe that a
Kekulé structure, having the arrangement E in the k-th square is unique, k
=1,...,n-1. We denote this Kekulé structure by Lk (Fig. 3). In addition,
xl.n has only two more Kekulé structures (Lo and Ln) in which there are no

E-type arrangements of double bonds, see Fig. 3.

Now, the structures L\: and L . k=1,...,n, are of equal parity be-

k-1

cause one is obtained from the other by moving three (an odd number) double

bonds within the k-th hexagon. This implies that ASC is n+1.

Proof of Theorem 1

According to what was said in the previous section, we examine only
those Kekulé structures of )‘(w‘:l in which arrangements of the type A and B
are absent. Further, let the Kekulé structure which induces the structure
Lo in all phenylene fragments be defined to be even. Then all Kekulé struc-
tures of X.,“ which induce one of the structures Lk (k = 0,1,...,n) in all

phenylene fragments are even; their number is equal to (n+1)" .
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k

Fig. 3

Assume that n has a fixed value.

Denote the set of all Kekulé structures of Xn i without arrangements
of the type A and/or B by 9’_ . The even and odd structures from .9" form the
subsets & and O , respectively. Of course, 8 v @ =¢ ; &§ n0 =@a .

m m m L] m m m
The edges of Xm i which connect the first and second phenylene fragment
Wwill be referred to as cut-edges, because by thelr removal X- n decomposes
'

into X
-

e and an [nlphenylene (= }|:1 1_l]. In Fig. 1 the cut edges are those
v ’

which intersect the horizontal dashed line; ){-'n has n cut-edges.

Denote by .‘f: the set of all structures (from .?.) which 1lnduce one of
the structures Ly (k = 0,1,...,n) in the first phenylene fragment. In these
Kekulé structures all the cut-edges correspond to single bonds. Let further

E: and O: be the subsets of ?: , formed by the even and odd structures,
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respectively. Let ¥° =% \ ¢ | € =& \ & ana 0’ =0 \ 0 . Evi-
m m m m m m m m m

2

dently,?1=81u01 s €' n0' =0 and ¥ = €%v 0° , & 2
m m m m m m m m m

no =2 .

m

Note that by removing from X_ " the first phenylene fragment we obtain
X i whereas by removing both the first and the second phenylene frag-
m=1,n
ments, we obtain X (see Fig. 1).

m=2,n

We are now ready to prove Theorem 1 by means of mathematical induction
on the parameter m.

Lemma 1 validates the statement of Theorem 1 for the case m = 1.

Assume now m > 1 and consider the set Y; < 3’- of Kekulé structures
whose cut-edges do not pertain to double bonds. Exactly one (induced)

structure of X (i.e. an element from .‘fn_l) is assigned to each struc-

1,n
ture from S’: . Bearing in mind the criteria for determining the mutual
parity of Kekulé structures (stated at the beginning of the preceding
section, it is not difficult to show that all these structures are of equal
parity.

Conversely, exactly (n+1) elements from S": are assigned to each element
from ?m_’ . This is because (according to Lemma 1) the number of structures
of the (first) phenylene fragment is n+l. They too all are of equal parity.

Now, we immediately obtain
8] = m+ 1|gL | and |0 = (n+ DO | (3)
where |X| stands for the cardinality (= number of elements) of the set X.
Consider now 9’: - the set of all Kekulé structures from .Tm for which at
least one cut-edge corresponds to a double bond. Since the number of verti-
ces in the (first) phenylene fragment is even, the number of such cut-edges
is even.
Choose an arbitrary Kekulé structure Km(k,p) from 3’: . Let the ordinal

numbers of the first two cut-edges corresponding to double bonds of this
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Kekulé structure be k and p (k < p). Note that k and p must have opposite
parities, i.e., p-k must be odd.

In Fig. 4 we present an example of such a Kekulé structure, namely
Km(k,pJ for k = 3 and p = 8; heavy lines indicate the positions of double

bonds.

Km(k,p)

Fig. 4

It is not difficult to see that in the Kekulé structure K-(k.p)
depicted in Fig. 4, all edges indicated by heavy lines have to be present,
i.e., their position is fully determined by k and p. (To verify this one
may try to construct a Kekulé structure in which one of the indicated edges
is not contained. After some trial it becomes evident that such attempts
necessarily end in failure. If we want to be completely rigorous, then the
examination has to be separately repeated for every edge which in Fig. 4 is
indicated by a heavy line. This is elementary, but lengthy.)

The above observation implies that no more than two cut-edges can cor-
respond to double bonds, and that all edges connecting the second and the
third phenylene fragment must correspond to single bonds. Consequently, the

remaining double bonds of the Kekulé structure of X_ Q (i.e., the double
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bonds lying below the first two phenylene fragments of Xm‘n) induce a
unique Kekulé structure Km_2 € ?m-z .

Kn(k,p) and l(m'2 have opposite parities. To see this, rearrange cycli-
cally the double bonds embracing the hatched region in Fig. 4 and observe
that the number of these double bonds is even. The Kekulé structure thus
obtained is denoted by K;(k.p] and is depicted in Fig.5. Since K"n[k.p) does
not belong to .‘Pm , we rearrange cyclically the double bonds embracing its
hatched regions (see Fig. 5). By this the Kekulé structure K:‘(k,p) is
obtained. The number of hatched regions in K;'(k.p) is even, and therefore
the parities of K"ﬂ(k,p] and K";(k,p) are opposite.

Now, K;(k.p) € .'f‘: induces the structure Lp_i in the first and second

phenylene fragments. Consequently, K;(k,p] has the same parity as Km—z

K;(k,p)

Fig. S
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We thus conclude that exactly one (induced) Kekulé structure from ?m_z
is assigned to each Kekulé structure from .‘Pj , and that these Kekulé struc-
tures have opposite parities.

The number of ways to choose the numbers k and p (1 = k < p = n), such
that p-k is odd, is equal to Ln2/4j . Indeed, for even n this number is 1 +
3+ ++s + (n-1) = n°/4 whereas for odd values of n it is equal to 2 + 4 +
ces 4 (n-1) = (n*-1)/4 .

This yields

2 2 2 2
|&,| = [n"4] |o _,| and |O| = |n"/4] |&_ _| . (4)

Combining Eqs. (3) with (4) we obtain

LA

2
(n + 1)]8“_1| + |n“/4) |0m_2|
and

1o,

m

(n+ 1o _ | + [n°/4] |6

which finally results in

l&] - lo| =+ |&_]| - [oﬁ[] . |_n2/4j[|8__2[ s |o__2|] : (s)

In accordance with the definition of the algebraic structure count [1],
(&, - 10| =Atx } for h=mn, m-18&m-2

and we see that Eg. (5) is tantamount to Eq. (1).

Knowing that A{Xt.n) =n + 1 (see Lemma 1) as well as that [9]
A{X, } = | {(30°+ 8 + 5) | , we easily verify that the initial conditions
in (1) are precisely those stated in Theorem 1.

By this the proof of Theorem 1 is completed. .
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