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ABSTRACT

It is shown that generalized inverse matrices of Laplace-Kir-
chhoff matrices, Eichinger matrices E, are inverse matrices of
perturbed Laplace-Kirchhoff matrices. Similarly, singular dis-
tance matrices have inverses, when perturbed. The slightest

perturbation is necessary for long chains.
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Introductien

Properties of chemical bonds of molecules are related
with eigenvalues of their adjacency matrices A, which were
therefore studied intensively [1]. Great interest was paid to
distance matrices D. They are connected with the oldest topo-
logical index, the Wiener number W, which is one half of the
sum of elements of the distance matrix [2,3].

Only recently, chemical applications of Laplace-Kirchhoff
matrices aroused interest [4-9], although they have been used
in crystallography [10].

The Laplace-Kirchhoff matrix is a quadratic form of the
incidence matrix S of an oriented graph

s's=v-a (1)

where V is the diagonal matrix of vertex degrees, and g
is the transposed matrix S.

For linear chains and simple n-cycles Eichinger [11] de-
fined generalized 1inverses to the corresponding Laplace-Kir-
chhoff matrices by way of the matrix equation

S'SE = nU (2)
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where U is the generalized unit matrix :
T
U=1-1/nJJ
I is the diagonal unit matrix,
J is the unit vector-column,
nU is identical with the Laplace-Kirchhoff matrix of the com-

plete graph, n being the number of vertices.
Recently, Klein and Randic [12] proposed for finding

the generalized inverses of s's equation (3)
2= (ss + 3N -y (3)
where they used the constant c=1/n2. and applied such in-
verses for finding the resistance distances in graphs.

I found that some classes (and examples of small graphs)
of matrices obtained by a Moebius inversion of the Ulam sub-
graph conjecture [13]

E=3_ (5 s's)" (4)
J=1 ]
where ajn is the matrix M with jth row and column deleted

(their elements are zeroes), have properties of the generali-

zed inverse of the Laplace-Kirchhoff natrices.
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The elements of such E matrices (E as Eichinger) of trees
correspond to distance sums, eJJ is the sum of distances of
the vertex J to all other vertices Zl d‘j, elj for i#j
is the sum of distances of the vertex i diminished by walks
passed between vertices i and j. The inverses E were verified
at trees, simple n-cycles and complete graphs by direct
counts. For simple n-cycles, the elements of the Eichinger
matrices are

e = (2] +(2)]

and for complete graphs E = U.

The generalized inverses of s's according to the equa-

tions (3) and (4) differ sometimes. E. g. for star 54

Equation 3 Equation 4
1/16 3 =1 =1 = 174/ 3 2 2 2
=1 1T =5 =5 2 5 1 i
=1 =5 ¥ =5 2 1 5 1
=1 =5 =5 11 2 1 1 5

Since S'SJ'J = 0, there can be infinite many generalized

inverses of S'S differing by cJJ.



-225-

Eichinger matrices with known elements have an important
property. They are nonsingular and therefore they have inver-
ses E ' with the properties

s's = nue™ EE' = I

In this paper inverses of Eichinger and distance matrices

of several types of graphs are studied.
Perturbed Laplace-Kirchhoff matrices

The difference matrix X between a Laplace-Kirchhoff mat-
rix s'S and the inverse of its Eichinger matrix must yield
the difference between matrices I and U, which is 1/nJJ".

(s's + X)E = U + 1/nJJ" = I.

Because the row and column sums of Eichinger matrices are
constant, it was possible to formulate the following conjectu-
re and prove it for trees, simple cycles and complete graphs.

CONJECTURE: An Fichinger matrix is the inverse of the
Laplace-Kirchhoff matrix perturbed by a fraction c of the
quadratic unit matrix

E=T) (5887 = (s + a7
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Proof for trees: The trace elements of Eichinger matrices
E of trees are distances of the vertex j to all other verti-
ces. Each distance dlj is counted twice, thus Tr(E) = 2W, whe-
re W is the Wiener number. Other matrix elements in all rows
and columns are distances unpassed during all walks between
the given vertex i to all other vertices 1 till n. Their sum
is just the distances passed between all vertices, again the
Wiener number W. Therefore the corrective constant for trees
is c = 1/W.

Proof for simple cycles: From the recurrence relation for
Eichinger matrices of simple cycles [13] follows, that row and
column sums of their elements are constant, too. They are gi-

ven by the sums of binomial coefficients

Ve=-3_ e =t |[BH = ¥ =
i=1 1) 3 k=0 3
= n-1 n+l _ n+l
-1/n[[3] +2{4]] _1/2[3]
Proof for complete graphs: It is given by the definition.
The sum of matrix elements is just (n - 1) = 1/c.
Interesting results were obtained for a disconnected

graph, e. g. G = L2+ La' It was necessary to find at first the
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Eichinger matrix of its complement G = (K - G) and its inver-
se. E '(G) is the corresponding Laplace-Kirchhoff matrix per-
turbed by noise elements in the range nlj = 0.0310 to 0.0313.
The Eichinger matrix E(G) was then found as the difference
E(G) = E(K) - E(G). Its elements were rather large numbers.
Nevertheless, the product S'SE was a surprisingly simple
matrix. It was the Laplace-Kirchhoff matrix of K2+ l(3 with
different multiplicities of both components.

The Laplace-Kirchhoff matrices of disconnected graphs have
as many zero eigenvalues as the corresponding graphs have com-
ponents. Even if all zero eigenvalues are removed by perturba-
tion, they are restored by multiplication with their inverses.

Inverses of some distance matrices
K ivka and Trlnajsti; [14] determined distance topologi-
cal polynomials of some classes of graphs. It follows, that
topological distance matrices of even-membered cycles have no
inverse, because their determinant det [D] is =zero, but for

certain classes of graphs, D ' do exist. The elements of D '

will be formulated in the form DD '= bI, to avoid complicated
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fractions.

(i) D of complete graphs Kn:

d =0 bdl=n-2
11 11

d &4, bd_l = -1

1] 1]

The constant is b = 1/(1-n). The inverse distance matrix

of the complete graph is thus related to its Laplace-Kirchhoff

matrix simply as

-t = 1rct-n)sTs - 3
K K K
(ii) D L of star graphs S rooted in the first vertex:
n
d =0 bd™} = 4(n - 2)
i1 11
d =d =1 bd™' = n - 2, otherwise
11 1) it
d = 2, otherwise pd ! = bat = -2
1) i1 1]}

bd;; =-1, otherwise

The constant is b = 1/2(1-n). The inverse distance matrix

1

of the star graph can be written (except the element d:j) as
D" '= s's + (n-2)1 - JJ.
(1i1) D! of linear chains f
& 4 bd" ! = bd"! = n-2; bd' =2(n-1), otherwise
1) 11 nn ii
= =1-n; bd. ! =bd"} = -1; 4! =

1,141 in ni 1)
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The constant is b = 1/{2(1-n)]. The inverse of the topo-
logical distance matrix of the linear chain can be formulated

again as its perturbed Laplace-Kirchhoff matrix

D! =-1/258s +bx
L L L

where X has elements x = X = x = X =1, x =
11 in nl nn ij

0 otherwise. For short chains, the perturbed matrix is similar
to the Laplace- Kirchhoff matrix of a cycle, but for infinite
chains b » 0 and the perturbation X needed to destroy the sin-
gularity of S:SL is negligible.

(iv) D;l of an odd-membered cycle C for the shorter path is

d, =min |1 -j| mod n/2 bd =1 “2p°

n=2p+1; bd =1+p - p ; bd® = n, otherwise;

I, 1+p 1)

The constant is b = 1/(p2 +p).The inverse distance matrix
of odd-membered cycles can be expressed again as the sum of

matrices
-1 _ T _ 2 T.T
Dc = nJJ (p” +p)P ScScP

where P is an unit permutation matrix.
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For distance matrices of graphs with multiple bonds, de-
fined by Balaban [15], and for distance matrices of molecules

with heteroatoms [16], relations were much more complicated.

Discussion

To find a proof that the distance matrix of a tree is
a multiple of an inner inverse of its quadratic form of inci-
dence matrix took as many minutes as elapsed years when I did
not suspect that such a relation could exist. I found it from
a curiosity, realizing that the elements of corresponding Ei-
chinger matrices E are distances. Rutherford discovered the
relation before me [10], solving the classical Kirchhoff prob-
lem of spanning trees of electrical circuits formed by elec-
trons in crystals. This paper was written simultaneocusly with
[12], unfortunately it was lost by post. Klein and Randi;
were more general, but my proof, yielding the Wiener number W
for an arbitrary constant c, could be interesting for chemist-
ry and shows a specific role of the Eichinger matrices bet-

ween the generalized inverses of s'S. The constant c is not
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as arbitrary, as can be deduced from formal relations.

Finding the generalized inverses of E using its com-
plementary graph matrix, indicated shortly above, is possible
probably by a relation of eigenvalues of the Laplace-Kirch-
hoff matrices both graphs, G and G, which are complementary,
too.

Eichinger introduced matrices E for linear chains only,
as matrices transforming the quadratic form ss’ of the comple-
te graph into the quadratic form HVT, where W is the walk or
path matrix [17]. But this matrix is simultaneously the walk
matrix of the linear chain UL [17] and because the incidence
matrix of the complete graph can be split into the product
s = ULSL, it leads to formal equivalences

K
SEST =WSESW =WwW or SES =1
kK K LL LL L L L L n-1

The relations between different matrices can be interpre-
ted as follows [18]: A structure, chraracterized by its inci-
dence matrix S, projects into the Hilbert space as two

quadratic forms STS and SST. Their traces, thus sums of their

eigenvalues, are equivalent to the original vector S. Some
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physical and chemical properties depend directly on eigenvalu-
es of both quadratic forms, other ones only on the eigenvalues
of the off-diagonal adjacency matrix A. Other physical proper-
ties depend on the inverse eigenvalues or elements of inverse
matrices, which for acyclic graphs are distances [9]. The
Laplace-Kirchhoff matrices are singular, they have one =zero
eigenvalue. But they can be perturbed, meaning that a slight
distortion of all their elements leads to nonsingular matrices
with true inverses. Such a perturbation can be produced for e-
xample by the electrical potential, applied to a circuit [12].

The situation is complicated by embedding the molecules
into the three dimensional space. Topological distances must
be replaced by geometrical ones (or resistance ones), which a-
re squares of Euclidean distances, to be comparable with topo-
logical distance matrices [19,20]. The conformation of the
graph is changed. Different distance moments have different

properties, which depend on symmetry.
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