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Abstract. Within the constraints of the Hiickel molecular
orbital theory, the generalized formula of McClelland-type
for the total m-electron energies (E) of alternant
hydrocarbons has been modified and separated into two
subfunctions which should yield E values of alternant
hydrocarbons in the different ranges of the angle of total mn-

electron energy.

1, Introduction

The finding (1) that there exists a precise linear
relationship between the total m-electron energy (E) and the
kinetic energy of the m-electrons in a conjugated molecule
caused the investigations to focus on the topological
backgrounds of E to acquire a great interest and
importance in the last decade (2-14).

Although, the structural factors that determine the

gross part of E are now identified , a complete solution of
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the question that is how fine topological changes influence E
still preserves its mystery.

In the present study, some interesting findings on E
values of alternant hydrocarbons are mentioned within the

constraints of Hlickel molecular orbital (HMO) approach (15).

2. Theory
It is known that E of alternant hydrocarbons is

expressed (9) as
E= 2(ne)'/2 cos o (1)

where the number of carbon-carbon bonds and half the number
of carbon atoms are represented by e and n , respectively
whereas the angle Op is called the angle of total mn-electron
energy which reflects the fine topology of the system. Since,
cos O

r $ 1 . eq.1 yields MecClelland's upper bound (16)

ineq.2 .
E < 2(ne)l/? (2)

In the period before the derivation of eg.1 , E values were

estimated by using a formula based on ineq.2 that is

E= 2!(1!6)1/2 (3)

where a, inherently related to cos 0, was determined from
the known values of E for some group of conjugated molecules
(2,6). McClelland-type nonlinear lower bounds for E are alsc

common in the literature. For example, it was proved by
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Gutman (6) that
E > 2g(ne)t/2 ; g= (16727)1/2 (4)

holds for all benzenoid molecules. Cioslowski also reported
(17) another lower bound of the above type (ineqg.4) with the
g value which is equal to 0.6734 . Some more bounds of the
same type are obtained by Babic' and Gutman (18). Recently,
it has been proved (13) that the lowest bound for E of
alternant hydrocarbons possesses the g value of 0.5 .

Below, it will be pointed out that alternant hydrocarbons
ought to be grouped, at least theoretically, into two
classes, depending on the mathematical functions which yield

their E values .

Modification of the McClelland-type formula

For the purpose of the modification of the generalized
McClelland formula (eq.l), construct an oblique cartesian
coordinate system, having an acute angle which is equal to On

of the alternant hydrocarbon being considered (Fig.1l).

* X

C A

Fig.1 An oblique cartesian system used for the derivations.
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on the X-axis, choose a point A such that OA = E .Then draw
a perpendicular from point A to the Y-axis. After that, from
the foot (B) of the first perpendicular draw another one to
the X-axis and finally from the intersection point (C) of the
second perpendicular and the X-axis draw a perpendicular to
the Y-axis. Let the foot of the third perpendicular be point

D. From Fig.l obviously, OB = E cos O , OD = E cos30,.  and
DB = E cos O - E cosaou =t (5}
S8olving eg.l1l for cos 0, and inserting into eg.5 one gets
t = 2/2(ne)1/2 - g4/sne(ne)l/? (6)
solving for E yields

El = (2ne + u)l/2 and Ez = (2ne - u)l/z (7)

where

u = (4n2e? - sne(ne)l/2 t )1/2 (8)

Evidently, the real values of u require t < (ne)lfz/z

on the other hand, inserting eq.l1 into eq.5 one obtains,

t= z(n.)i/z( coszan - cos‘or } (9)
Bubstitution of eq.9 into egq.8 and then eq.8 into eg.7 yields
B, ,=(2ne)*/2 (1 ¥(1- 4(cos?o, - cos'o, 1)1/? )1/2 (10)

Figures 2 and 3 display E vs. u and E vs. O

yr graphs for

alternant hydrocarbons.
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2yne
2ne

0 2ne E2 u

Fig.2 Variation of E as a function of u.

Pig.3 Variation of E as a function of 0, .

Bstimation of the g value.
Figure 2 shows that as u varies from zero to 2ne , E;

increases smoothly from (2ne)1/z to z(no)lfz. Thus, its
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functional average (19)
2ne
E, = (1/2ne) 5' (2ne + u )1/2 au (11)
[}
is equal to

B, = (23/2/3)(23/2-1) (ne)1/2 (12)

Oon the cther hand, as u varies between 0 and ne, E, smoothly
decreases such that (2ne):"/2 z By > (ne)]'/2 . The functional

average of E, yields the g value as (23/2-1)/3 N

3. Results and discussion

The generalized McClelland-type formula (eq.l1l) in its
modified form (eg.10) consists of two complementary
equations , E; and E, . Figure 3 displays graphs of these as
the function of O, . As it is evident from the figure, the
combination of arcs of By and E, engenders E= 2(119):"/2 cos °1.'r
graph in the range of 0 < O, < w/2 . Thus , the approach
utilized in the present study unveils some hidden topological
factors which are effective on the total m-electron energies
of alternant hydrocarbons. For instance, one can visualize
the gecmetrical meaning of various upper and lower bounds for
E. Obviously, E should mimic E; curve (solid curve in Fig.3)

in the region of 0 < O

r < 0/4 in order to be single-valued

in the range of 0 < Oy ¢ m/3 (the maximum value of O_ is 60
{13)), whence E, curve (dashed curve) should be mimiced for
n/4 £ Op < /3 . Note that, although E, produces E in the
range of (Zne)l'/2 to 2(na)1/2, E, yields E values only in

1/2 1/2

between (ne) and (2ne) . The abrupt character changes
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(8 is the spinode (cusp) peint (19) in Fig.3) of E; and E,
curves occur at O = n/4 .

In the 1light of the present treatise, the angle
corresponding to cusps of E; and E, curves is critical and it
is equal to m/4. There are a few molecules having O, = n/4 .
For instance, cyclobutadiene and methylenepropenyl system
(which is a non-Kekulean structure (20)) have to be cited.

On the other hand, the g values obtained from the
functional averages of El and Bz are 0.8619 and 0.6095 ,
respectively. The former value is greater than the one
obtained by Gutman (6) which is 0.7698 and holds for all
benzencid compounds. Whereas the value obtained from E,

function is less than Cioslowski's bound (17), 0.6734 .

4. Conclusion

Within the HMO framework, the total m-alectron
energies of alternant hydrocarbons fall on the curves of E,
or E, if O lies in between 0 and m/4 or m/4 and n/3 ,
respectively . However, E vs u curve (Fig.2) implies that in
order to have a single value for the total m-electron energy
for the same value of u , either E, or E, should be abandoned
or alternant hydrocarbons should be grouped inte two classes

depending on whether E; or E, reproduces their E values.
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