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Abstract. A novel total m-electron energy formula for
alternant hydrocarbons is derived which is equivalent to the
smaller root of a parabolic function of E in parametric form.
The topological parameter, R, is found to be confined into a
narrow range. An upper bound for E which is linear in form is

obtained.

1.Introduction
The total m-electron energy (E) of conjugated
hydrocarbons varies depending on topological variations
occuring among them. So far, very many topological formulas
have been suggested (1-15) for E (or bounds for E) of
conjugated systems, especially for alternant hydrocarbons.
The topic has been frequently appeared in the literature
(9,16).
Various theoretical considerations of the total m-

electron energy , using quite dissimilar approaches
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resulted in topological formulas of the McClelland-type (1)
and it has been unequivocally established that the gross part
of E is determined by only two topological invariants, namely
the number of carbon atoms (N) and the number of carbon-
carbon bonds (e) (9,16). The role of other graph invariants
is much more obscure and their effects are collectively
included in the angle of total m-electron energy (13,17).
Many Yyears ago, Hall reported (10,11) a formula for E of
benzenoid hydrocarbons which exhibits a linear dependence on
N, e and the number of Kekule structures. Obviously, it is
different from the McClelland-type formulas which are
nonlinear in N and e.

In the present study, within the Hiickel molecular
orbital (HMO) approach a parametric formula for the total n-
electron energy of alternant hydrocarbons has been derived

which is linear in N and e.

2.Theory
Let G(2n,e) be the graph of a conjugated hydrocarbon

represented in the usual manner (18). Let X; > X, >...> X be
the eigenvalues of the adjacency matrix (standing for the
occupied molecular orbitals (19)). The total m-electron
energy ( in B units) conforms to the relation

n

E =28 X4 (1)

i=1

where n is half the number of carbon atoms .

Now , let vectors A and B in an n-dimensional Euclidean



-177 -

linear space be defined as
A(1,1,...,1) and B(X;,X5,...,Xp)

Then, the scalar product (20) of these vectors is equal to

E/2 , hence it yields (13)

1/2

E = 2(en) cos O (2)

vhere Op is the angle between vectors A and B (Fig.1).

B/

rn
o
0 D
n A
Fig.1 . The relation between e, n and O .
By using the cosine theorem one gets
0c2 = n + e + 2(ne)l/2 cos Op (3)
A2 = n + e - 2(ne)l/2 cos O (4)
then by adding egs.3 and 4 one obtains
0¢2 + AB2 = 2(e+n) (5)

whereas substracting eq.4 from eg.3 and considering eq.2,

eq.6 is produced.
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oc2 - 282 = 4(en)l/2 cos Oy = 2E (6}

Now , construct a right angle triangle which possesses
GC as the base, & = P (Fig.2) and BE = (2(e+n))1/2 . fThen,
evidently due to the theorem of Pythagoras the height, 0B, is
equal to AB because of egs.3 and 5. Finally, construct
another right angle triangle such that OC, this time is the
hypotenus , € = o and B' = (28)1/2 (Fig.2) . Then,
obviously, eq.6 necessitates OB'=AB . Note that ABZ = n + e
-E , 00 =n+e+E (see egs.2,3 and 4) and from Fig.2,
evidently sin oo = tan B .

A

o

-

B
Fig.2 A different geometrical relation between e,n and E.

Bince, in triangle OCB , tan B = 0B/OC , inserting the
equivalents of OB and OC (egqs. 3 and 4) into the above
expression for tan B and then squaring both sides of the

equation one gets

tan?p = (e + n - E)/(e + n + E) (N
solving for E results in
E = (e + n)(1 - tan®p)/(1 + tan?p) (8)

or
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E = (e + n)(1 - tan?p)/ sec?p (9)

Note that tan?p < 1 due to eq.7 .
Oon the other hand, squaring both sides of eqg.7 and then
adding the denumerator to the numerator and substracting

numerator from the denumerator , one gets

(tan'p + 1) (e + n)2 + B2

(1 - tanp) 2E(e + n)

n
]

(10)

Note that R » 1 . By rearranging eq.10, one obtains an

equation for a parabola in the parametric form.

E2 - 2(e + n)RE + (e + )2 = 0 (11)
and
tan B = ((R - 1)/(R + 1))1/4 (12)
Eq.11 yields
E = (e + n)(R - (RZ2 - 1)1/2 (13)

Note that the other solution of eq.11 has to be discarded for

E (see the appendix).

A Lower Bound For R.
combining egs.2 and 13, solving for cos Op and using the

property that cos 0, < 1 one obtains
cos 0y = ((e+n)/2(en)1/2)(1-(1-1/8%)/2)r < 1 (14)

Rearanging ineq.14 yields
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R < (2(ne)2/2/(e+n))(1-(1-1/R%)1/2) 1 (15)

Note that R >1 (see eqg.10). Hence, the right hand side of

ineq.15 becomes

(2(ne)t/2/(e+n)) (1-(1-1/R%)1/2)"1 53 (16)
8olving for R yields

R > (1-(1 - 2(en)1/2/(e+n))2)~1/2 a7
An Upper Bound For R.

8ince, for alternant hydrocarbons cos O, > 0.5 (13,14),

ineqg.14 can be modified to yield

cos Oy = ((e+n)/2(en) /?)(1-(1-1/R%)2/?)R > 0.5 (18)

8olving ineq.18 for R one obtains
R < ((e+n)? + en)/2(e+n)(en)1/? (19)

Estimation of E.
8ince, R > 1 , let R = 1+a where a represents a

small perturbation. Then, express eq.13 in terms of a.
E = (etn)(1 + a - (a? + 2a)1/2) (20)

Taking the first derivative it can be shown that egq.20 is
monotonically decreasing function of a and its maximum value

is for a=0. Thus, an upper bound for E is obtained .

E < (e+n) (21)

Hence, one can estimate E as
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Ex~ (e+n)P (22)

where ©0 < P <1 .

3. Results and Discussion

Eg.11 represents a parabola where R is a parameter
characteristic for the molecule being considered. The
solution of eq.11 is highly dependent on R . For instance ,
ethylene possesses R=1 and double roots are produced. For
other alternant hydrocarbons two distinct roots exist. oOf
these, the smaller root yields E value. The other root is a
complementary one (Ec) (see the appendix).

Table 1. tabulates the upper and the lower bounds for R
as e/n ratio changes between 1 through 3. As it is seen, the

variation of R is very limitted.

Table 1.

The upper and the lower bounds for R as e/n varies.

e/n Upper bound (Eg.19) Lower bound (Eg.17)
1 1.2500 1.0000

2 1.2963 1.0016

3 1.3712 1.0090

A search for R values of various alternant hydrocarbons
revealed that R is closer to its lower bound expressed by
ineq.17. For instance, a set of benzenoid@ hydrocarbons

(21) possesses the mean value of R as 1.01781 (SDEV: 1.80074
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10"3). For annulenes of up to 2n=30, R varies between 1.0069
(benzene) and 1.0833 (cyclobutadiene). In the case of
homologous annulenes R alternatingly increases or decreases
depending on whether 4m or 4m+2 type annulene being
considered.

on the other hand, the value of P is close to 1. A set
of benzeneoid hydrocarbons (21) possesses 0.828535 (SDEV:
0.008752) as the mean of P. In general, P is comparable to
McClelland's factor, 0.92 which is suitable for the nonlinear

E formula (eg.2) and stands for cos Oy .

4.Conclusion

In the present study, a parabolic function of E is
derived which gives E of the alternant hydrocarbons as a
function of e,n and R. The later one is a parameter and its
variation prcduces E of the isomers if e and n are kept
constant. Actually, R changes in a rather narrow range, hence
it stands for very fine topological contributions into E . On
the other hand, the physical importance of E, , the other

root of eg.11 , ought to be investigated.

Appendix
The other root of eq.13 is not a proper value for E

because E, is equal to
E,= (e+n) (R+(R?-1)1/2) (23)

8ince, R>=1 (see eg.l10) then eq.23 requires

E.>= e+n (24)
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on the other hand, McClelland's bound ( E=< 2(ne)1/2 ) nolas

for E . Hence, E= E, requires that
e+n =< E, =< 2(ne)1/2 (25)

squaring the right and leftmost sides of ineg.25 and then
rearranging one obtains

(e-n)2=< 0 (26)
obviously, ineq.26 is invalid for real numbers. Hence, the

possibility of E= E, has to be discarded.
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