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Abstract: A Simple method is developed which allows all fixed bonds and all
normal components of an essentially disconnected benzenoid to be recognized.

In this paper all the terms are applied in consistence with those given inf-7],

The set Bx of Kekuléan benzenoids decomposed into the class By of normal
benzenoids (which have no fixed bonds) and the class Bzp of essentially
disconnected benzenoids (which have some fixed bonds).

Let B € Bx be drawn in the usual way in the plane (see Fig.1) and let /
denote a hexagon (i.e., a closed hexagonal region) of B. If none of the edges of h
represent a fixed bond, then 4 is called free. Clearly, B € By if and only if all
hexagons of B are free.

The region covered by all free (non-free) hexagons of B decomposes into
maximal connected parts; each such part is called a normal component (fixed
bond component) of B. By definition, no edge in the interior and on the
boundary of a normal component represents a fixed bond. As shown in Fig.1.
the smallest normal component contains only one hexagon.

Inl, we proved the following result.

Theorem 1 Every fixed bond component of a B € Bgp is adjacent to at least
two normal components. No normal component surrounds another component.

Note that a fixed bond component may surround other components (see. e.g.,
Fig.1).

Fig.1 Normal components and fixed bond components in essentially disconnected benzenoids
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It has been shown®l that everv normal component represenis a normal
benzenoid.

There are two problems which are interesting for chemists: How does one
determine whether an edge is or is not of a fixed bond tvpe? How does one tind
all the fixed bond components?

For the two problems, in 1935, L. Pauling et al. proposed the following
formulal®:

Pre =k,,1fk, (D
where k is the number of Kekulé structures of a benzenoid B, r and s are two
adjacent carbon atoms in B, and k,, is the number of Kekulé structures of a
benzenoid in which there is a double bond between r and 5. If p,; =1, then rs
is a fixed double bond edge; if p. =0, then rs is a fixed single bond edge.

Inl1% Sachs proposed the "horizontal cut method" to find the fixed bond
edges. Inl'!l, F.J.Zhang et al. indicated that there exist Benzenoid systems in
which the fixed bond edges cannot be found by the method, and proposed
the "horizontal g-cut method”. However, all the above methods are cumbersome
and time-consuming.

In this paper , we propose a new method to find the normal and fixed
components ina B € Bgp.

€onsider a Kekuléan benzenoid B having no holes with size larger than one
hexagon. It is drawn in the manner that some of its edges are vertical.
According to Sachs' 1-to-1 correspondence theorem!!!!, a Kekul€ structure K of
B corresponds to a P-V (peak to valley) path system of B. In any Kekule
structure of B, all the oblique edges in the corresponding P-V path svstem. and
all the vertical edges not in the P-V path system are of a double-bond tvpe; the
others are of a single-bond type!'!). Obviously, in all possible Kekulé structures
of B. if an edge is in no P-V path system, or if an edge is in every P-V path
system. then the edge must be of a fixed bond tvpe. If there are no such edges in
B, then B is normal, otherwise, it is essentially disconnected.

Consider B € Bgp. It has three possible orientations. Let e be a fixed single
(double) bond edge. Then, for precisely one of the three orientations, e is in
every (no) P-V path system, but for the remaining orientations, e is in no (every)
P-V path system.

Let o, ', @"” be the three orientations of B, and consider one of them:
say ®. The number p of the peaks is equal to the number v of the valleys!'?.
Denote by P; the i-th P-V path of the j-th P-V path system, which goes trom
peak p; to valley v;, where i=1.2,--p, j=1,2,--- k(B), where k(B) is the
number of possible Kekulé structures of B. The correspondence (p,,v,)
between peaks and valleys is independent of the choice of P-V systems('*14)

Let T; be the set of the edges belonging to P, and let
K(8)

r=Ur, 7=Ur. )
¥ =



-161 -

Denote by 7 the set of all edges in & which do not belong to . Obviously. ali
the edges in 7" are of fixed bond type. Similarly, for the other two orientations.
o', ©” of B, we can find sets 7" and 77

Thus, Trp=TuT uT”. 3)
where T is the set of all fixed bond edges of B.

To find Tr by the method stated above is not easy. In this paper we propose a
new method.

Consider the P-V paths which are the monotone downwards parths starting
from p; and ending at v,(i=1.2,--- p) where the correspondence between p;
and v; is coincident with that in any P-V path system of B. Possibly, some of
these paths do not belong to any P-V path system. An example is shown in
Fig.2 by heavy line.

Fig.2 A P-V path not belonging to
any P-V path system

Among these paths the extreme left one and the extreme right one are §¥
and S” respectively. Let £,(i=1.2.---. p) be the set of the edges on ¥ and §”
and bctween them.

Put E= uE (4)

Obv:ousl\ T,cE,and TC F. We denote by E the set of all edges in B
which do not belong to E. All the edges in E are of fixed bond type. Similarly,
for the other two orientations . @” of B. we can find sets £/ and E7.

Let Er=EUE UE". (5)

The arrows represent the vertical direction
Fig3 Er =EUE UE"
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An example is shown in Fig.3. The sets of the edges in the unshaded regions
of Fig.3abcareE E' E" respectively.
We can prove Er=Tr. To prove this. we need only to prove the tollowing
two theorems.
For a given orientation of a hexagonal network, the set of vertical edges in
an edge set # is denoted by VD().

Theorem 2. VD(T)=VIXE) (6)
Proof:
From T c E, we immediately have
VD) < VD(E). N
On the other hand, we will prove also that
VD(E) < VD(D). (8)

Assume that there exists a vertical edge ab belonging to VD(F), but not to
FD(T)ie.,
ab e VD(E)WD(D). 9)
Without loss of generality, assume that ab € VD(E,,). Denote by Ai ;’b the
set of all the P-V paths starting from p,,, ending at v;,, and having the edge ab
in common. S?:(S?;) € MY, is the extreme left (right) P-V path belonging to
M, which is shown in Fig.4 by heavy line.

Piy

Figd S%, 5 e M,
Benzenoids have no holes larger than one hexagon. Any P-V path § divides
B into two parts. One lies at the left bank of §, and is denoted by L(S). The
other is R(S). Both L(S) and R(S) contain the path S.
LS)NR(ES)=S and LS)VR(ES)=8.

Firstly, we show that for a given jo(1 <jo € k(B)) and for a P-V path
pi(1 i< p i#io) satisfying that p,, ~S* 20 and Pio NSy £, the
tollowing two cases are impossible.

In case I, suppose that one of the two vertices p, and v, belongs to
L(pj,), the other to R(py,). (see Fig.5)
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It so, the P-V path p;; would pass above p, (or below v;) and B would
become a coronoid system!™l. (p,,, is shown in Fig.5 by heavy line. p; is

ior

enclosed in a circuit formed by p,y, and S;;.)

Fig.5 Casel

In Case 2, suppose that p,,, v, ab € R(py,) (L(py,)). where pj, = piedfv;
(see Fig.6a,b).

Put L = p;, "S- For the case of Fig.6a, L # p;, "R(S™). and for the case
of Fig.6b. L=py NR(SH).

In Fig.6a, we can find a monotone downwards path S(=p, edfabv;) € My,
shown by heavy line. S e R(S®), and S#8% 1t is a contradiction in the
definition of S, .

With regard to Fig.6b, obviously, L nC, = ¢, where C,is the contour of B
{otherwise, p;, wouldn't exist). Consider a path segment edf c L., Vertices e. f
are adjacent to e’,f e (S:f'[‘\L), respectively. Obviously, both ee’. ff' are not
external edges of B. Thus, we immediately find a monotone downwards path
S'(=pin€dfabv,) € My, shown in the figure by heavy line. §' € R(S'Y) and
§'#8% . Itis also a contradiction in the definition of S

Case 2

€104
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Secondly, we prove that for the other cases. ab e }'D(T). We only need to
consider the following two cases: A and B.
Case A For a given jo(l <jy £ k(B)). some P-V paths py (i=1.ix - i #1ip)
igr

satisfy that 1) py, mS:,”; = and py, NS # P
2) Pig»Ve € R(plju) (L(p‘.fo))z while ab € L(pﬁo) (R(Pyu))

Among the P-V paths py, satisfving the conditions stated above. the one

nearest to a and & is p,, (see Fig. 7). Denote the highest and the lowest common
ior

points of pi;, and S5 by e and f respectively. Then the P-V path
S1(= p,eabfv,,) containing ab satisfies the following formula:

i
Sin U pyo=9¢
=1, 1 i
Thus, §; and C’j P, form a new P-V path system of B. Hence, $, € Upyy;
=10y 1

and ab e FD(T) contradicting (9).

Fig.7 Case A

Case B As shown in Fig.8, for a given jo(l <jy < k(B)), two P-V paths p, ;,.
P, satisty that

Do NSy =0, Pujy S =4 (O<iviz<p h,iz#0);

2) i Vig- ab € H. where H = R(p:,;,) N L(p1y;, ). and the choice of i) and iy
make the region H become minimum.

For the case of i or (and) i, =0. although pg;,does not exist. we define
that R(poj,) = L(poj,) = B. In this case. let S:;’j'(or S ¥=Piajo - which contains ab.

For the case of 11,72 # 0. it is impossible that one of the vertical edges in
Pijo and one of those in p, ;, belong to the same hexagon (i.e.. the bottle-neck of
H must be wider than a hexagon). If there were such a narrow bottle-neck
(shown in Fig.8a). then the P-V path p,;, would pass above one of p; and p,,
and pass below one of v; and v,,, and B would become a coronoid system: or
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pi and v;, themselves would be on the boundary of the holes of a coronoid
system. Therefore, for a benzenoid B. such a narrow bottle-neck in H can not
exist.

e ;!
S

i d

N

-— oy
e e wy

(4) (B)
Fig.8 Case B

Thus, we can surely find a P-V path S, € M, shown in Fig.8b by heavy

ai
line. So LF) Pip =0. Soand ( Lp_) Pi,) form a new P-V path system of B.
=1, xip =1, &21g

K B)
Sy e _U]p;u,-, and ab e V'D(T) contradicting (9).
F

We obtain that for all actual cases, ab € VD(T) cotradicting (9).
Hence. VD(E) ¢ VD(T).
Finally, considering (7) and (8), we have
VD(E) = ¥D(T). Q.E.D.
Furthermore, FD(EFf) = VD(T k).

Theorem 3. If ab is a fixed single bond edge, then
abe {ENE' NE"} (orabe {E\VE' VE"}.
Proof:

If ab is adjacent to a fixed double bond edge e, then for one of the three
possible orientations of B, say ®, e is vertical. According to Theorem 2, for this
orientation, there is no P-V path passing through e. And so there is no P-V path
passing through ab. Thus, ab ¢ E. (see Fig.9a)

If ab is not adjacent to any fixed double bond edges. then according to
Theorem 4 inl'3l ab can be only adjacent to two disjoint Kekuléan
subhexagonal systems B, and B,. For two of the three possible orentations of
B, ab is oblique. Consider one of the two orientations (see Fig.9b). Then all the
peaks and valleys in B, are 1-1 correspondent in any P-V path system of B,. So
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are those in By. Thus. there is no P-V path containing ab. 1t there were such a
P-V path, then it would become non-moenotone downwards. So
abeg E. Q.E.D.

(a) (b)
Fig.9 Fixed single bond edge

According to Theorems 2 and 3, we have Erp=T5.
In a benzenoid B, the region covered by all the hexagons having edges
belonging to Er is the tixed bond region (which need not be connected). and the
remaining part is the normal region.
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