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Abstract

A partial ordering relation on a set of Kekulé structures in a class
of carbocyclic and heterocyclic compounds is defined such that one
double bond fixes another. This binary relation gives a partial order
to both numbers of Kekulé struetures and Pauling bond orders. The
partial ordering structure makes it possible for us to estimate upper
and/or lower bounds for the Pauling bond order, the Randi¢ index
(local aromaticity index in benzenoid hydrocarbons}, and the number
of Kekulé structures in the compounds.

1 Introduction

Let G be a polygonal skeleton (graph) in a class of carbocyclic and hetero-
cyclic compounds; assume that every vertex z; of G is connected with two
or three vertices [1]. When a double bond connects z; and z;4, in a Kekulé
structure of G, it is denoted by (z; = x:41), if the context permits, by d;
and when a single bond, by (z; — z:41) or by s;. Let K{G} be the number
of Kekulé structures in G, and let K {d;,d;} be the number of Kekulé struc-
tures with d; and d; in G. The local (and topological) properties, d; and s;,
of Kekulé structures often play an important role in the chemistry of carbo-
eyclic and heterocyclic compounds (2, 3]. The Pauling bond order between
i and zi4 in G, for example, is defined [3, 4] to be K {z; = 211}/ K{G}
(if K{G} > 0); this ratio is written as p{d,}, hereafter. A local aromaticity
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index for henzenoid hexagons, proposed by Randié¢ [5], is another example;
the explicit form of his index I for a cycle [#) 23 @3- @2j24] (7 2 0)in G
is given in more generalized form by

{[({[Il =To—Tgzg=-'"= 1'2_,'+4~]]+K{[$|—1'2 =Ty —E544 :]}}/K{G},

which is indicated by Ig{[#1 z2 @3 - 22544}, hercafter. The present paper
deals with the local properties of Kekulé structures that can be expressed in
terms of K{d;}, K{di,d;,...}, p{d:}, and Ip{[z1 z2 z4-- - 22j44]} in G.

The list below should be noticed from the point of view of the enumeration
of Kekulé structures in G, as was used in {1, 6]. Here {a) stands for a conju-
gated vertex that is connected with two vertices; (b) for a conjugated vertex
that is connected with three vertices; the prime mark for an unconjugated
vertex; also see the Glossary of Symbols.

K{zi aiy\ Gis2 @i} = K{zi ain}, (1)

K{z; aiy1 @iz Qigs Gipa} = K{z: aip aiyz}, (2)

K{z; biy1 aig2 aipa} = K{zi b}, (3)

K{zi=zin} = K{z{ zi;,}, (1)

K{fzi =2 — 23 = - = 19504~} = K{[z1 ~ 22 =&y =T Lo =]}: (5)
Kz i} = K{z: = 2o} + K{z; — 21}, (6)

K{zi — ziy1, 25 = 2511} < K{@: — Zip1,25 251}, (7)

(®)

By use of Egs.(1 - 3), it is possible, if needed, to contract and/or enlarge paths
and cycles under the requirement of conservation of the number of Kekulé
structures in G. Equation (4) points out that p{d;} and the numerator of
Ip{[z1 @2 T3 - 22;14]} are equal to p{a] z},,} and 2K {[2] o) 5 - - 2h;,,]},
respectively; hence the algorithms in [1] are applicable to the calculation
of K{d;}, K{di,d;,...}, p{di}, and Ip{[zy 22 x5 - 29544]} in G. Livery
bond that meets at the outside vertices in two local conjugated structures,
[ty =22 —x3 = = 2554~ and [z) — 22 = 3 — -+ — Tzj44 =), is single;
therefore, one obtains Eq.(5). Equation (6), where z; is adjacent to 2,4, is
an identity equation for numbers of Kekulé structures. It is easy to verify
Eqgs.(7 - 8), because the local conjugated structures in the left-hand side are
more restricted than those in the right-hand side. Another inequality below,
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Eq.(9), by which the Pauling bond order is joined to the Randié¢ index, can
be derived from Eqs.(5, 7}, where @y and x4, are next to each other in cycle
[1’1 Ly Tg° " Tojra)-

Ip{[z1 x2 23+~ 22544]} < 2p{ak = T }- 9
One often finds that the selection of a double bond in paths and cycles
uniquely determines a local conjugated structure containing the double bond;
e.g., if the first double bond d; in a path (b a2 as a4 as be) is selected (and
if K{by a2 as a4 as bs} > 0), then the remaining double bonds in the path
are all fixed by d, that is, d) fixes sz, sz fixes ds, d3 fixes s4, and so on.
Such a propagation of double bonds from one to another induces a partial
ordering on a sct of Kekulé structures. The present note shows that a partial
ordering relation gives upper and/or lower bounds for K{G}, p{d;}, and
In{[z\ T2 T3--- 2544}, as well as each equality in Eqs.(7 - 9).

2 Partial Ordering Relation on a Set of Kekulé
Structures

(1) Suppose that there is a Kekulé structure of ' with a double bond d;
between vertices x; and z;4), and suppose that every such Kekulé structure
containing this d; also has a double bond d; between vertices z; and z;4,.
Then we write

d; < dj,

and read "d; precedes d;” or "d; follows d;.” The binary relation (<) is a
partial ordering relation (7] because it satisfies three axioms: d; < d; (reflex-
ivity); if di < d;, and if d; < di, then d; < dj (transitivity); if d; < d;, and if
d; < d;, then d; = d; {antisymmetry).

Noting Eq.{(6), we have the inverse (>) of the partial ordering relation
(<)

8i > S35

which shows a dualism.

Clearly the partial ordering d; < d; implies that

K{di,z; 2,11} = K{di,d;} < K{z: 2ip1,d;}. (10)

Dividing both sides of this inequality by K{G}(> 0), one has
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pldi} < p{d;}, (11)

which is also a partial ordering relation. The dual of this partial ordering
relation is given by

pisi} 2 p{s;}, (12)
because p{d;} + p{s:} = p{d;} + p{s;} = 1. Bach equality in Egs.(10 - 12)
holds when d; and d; precede each other.

(2) A path (z; Ta- - - T241 Taj42) With 7 > 01is given such that every two
and zq, for k=1,2,...,7 + 1 is related, namely, such that d; < ds,ds < ds,
and so on. Then one uses the notation

dy <ds <00 <oy,

and calls it a chain [7]. Such a chain implies that

K{di} < K{ds} <--- < K{dzj1}. (13)

(3) Aset of dy with k=1, 2, ..., j+1 (j = 0), is called an antichain [7] if
no two distinct di are related. For ¢,k < j+1,

K{d;,zp 2r1} = K{di, di} + K{d:, s¢}, (14)

K{si,zp Ty} = K{si,di} + K{si,sc}. (15)

(4) Asetof dy <dge g for k=1,2,...,5+1 {5 > 0}, is given. Then
K{di} = K{di,da, -, dajs1}. (16)

(5) Remember that bi in a conjugated path has one of three kinds of bond
at the outside of the path; namely, double, single, and unfixed; such & are
denoted by be(=), br(—), and bi( ), respectively. An algorithm below tries
to construct a sequence, composed of dy, sk, bx(=), b(—), and bi( ), from a
path (z; Tit1- Tk - 2; Z;41), and also tries to fix three bonds that meet
at bk.

1. Make d;.
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2. Set ktobei+ 1.
3. Loop:

(a) Either if dy_,, and
i. if xx is a, make s,
ii. if 24 is @/, Failure,
i, il g is bp(=), Failure,
iv. if zx is be(—), make s,
v. if 2y is be( ), make s, and by(—),
vi. if x4 is &, Failure.
(b) Or if sg_y, and
i. if zx is a, make di,
ii. if x4 is @', make sy,
ili. if zy is br(=), make sy,
iv. if @y is be(—), make di,
v. if 2y, is b( ), Failure,
vi. if oy is &', make sy.
{¢) Increase k by 1.

4. Repeat the loop until either k = j or Failure.

Ifno sequence beginning at d; and ending at d; for a given path {(@; 2oy -+ 26+ 25 7541)
is complete, then search for another path. We can conclude that d; < d;, if
there is at least one sequence of d and s, from d; to d;.

3 Partial Ordering in Cyclic Subskeletons

) ra cycle [z) 22 2544) in G with 7 > 0, suppose that dy < dagyy for
= .., + 1. One can then make sure that:

(1
k
K{[z1 = z2 T3 - 22j44]}
=~ K{[i"l = T2 T3 =Ty T2j43 = I2j+4]}
K{[l“l ST2—T3=Tg— " — T243 :12j+4“]}
K{ltn— 22 =25 — 24 =+ - = 22543 — Tj44 =]}
K{[z1 — 22 3 T2j44]}-

IA
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The first equality implies that (, = z2) precedes all other double bonds in
(1 = 22 T3 = T4 Taj4a = Taj4a); the second equality is derived from the
assumption that each vertex of (7 is connected with at most three vertices;
in other words, if the double bond (2, = x3) in [Ty @2 - -~ 22;44] is fixed, then
the single and double bonds arrange by turn in the cycle, and then the local
conjugated structure of the cycle is uniquely determined. Equation (5) gives
the third equality, and Egs.(7 - 8) lead to the inequality in the last line.
That is,

K{[z1 = 22 23+ - T2504)} < K{[21 — 22 25 - T2j04]}. (17)

Using Eq.{17) and noting Eq. (6}, we have that:
2K{[z) = 2 23 - 2g54a]} < K{G} < 2K{[z1 — x5 3+ - 22554},  (18)

play = 22} € 5 < pla — ) GF K{G) > 0), (19)

In{[.‘l‘l Lz $2j+4]} = 2]]{1"] = IQ} S 1 (lf K{G} > U) (20)

Each equality in Eqs.(17-19) holds when K{[z1 = 22 x5 - - 22514]} = K {|z1—
Ty Ty Tajpa)}. p{di} is the smallest value in the set of p{dak_1} for k =
1B B2,

(2) For a cycle [z) 3 - 22;44] in G with § > 0, suppose that d; > dpyyq for
k=1,2,...,7+ 1. The dualism of partial ordering suggests that s; < sseq
fork=1,2,...,5+1in [z, — @2 23 — T4 - Taj43 —T2j44)- Hence,

K{[r) —mp 23+ - 2oj0a]}
= K{[z;— 2223 — 24 T2j43 — To514]}
> K{[Jfl—-1‘2213—124:"':$Zj+3*1?2y+4 =”’
= K{lni=22— 23 =24~ — T243 = 22504~ }. (21)

Notice that the inequality in the third line is different from the equality
discussed in the derivation of Eq.(17). Then one gets:

2p{w) — w2} 2 Ip{[w) 22 - 29544]} (F K{G} > 0). (22)
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The equality holds when K {[z)—z2 &3 — 24 T2j43—T2j44]} = K{[z1—22 =
T3— T4 =+ = Tojys — Tajpa =)} p{s1} is the smallest value in the set of
plsz} for k=1,2,...,j+2

(3) For a cycle [zy 22+ - - wyj4a) I G with 7 = 0, suppose that dy < dyeyq, and
dy > doggy for k= 1,2,...,7 + 1. Then, if the equality of Eq.(21) is true,
then so is the equality of Eq.(17), and vice versa; if the equality is concluded,
then

%K{G} =K{fzr=x 23 @24a)} = K{[&1 — 22 25 - @2544]},  (23)

1
plzi=zip} =plzi— 2} = 3 for adjacent vertices, (24)
In{[zy 22 22504]} = 1. (25)

4 Applications and Discussion

(1) In order to estimate K {d;}, p{d:}, and Ir{[z| z»-- - 22j44]} by means of
Egs.(10 - 25), we have to find a preceding and/or following relation among
double bonds in a Kekulé structure of . The application needs several
comments:

The partial ordering relation remains unchanged even in the contraction
and/or enlargement of paths and cycles by use of Eqgs.(1 - 3); for example,
(b= b) precedes all the other double bonds in hexagon p=b—a=b—a=
b-J,and alsoin b=b—-a=b—a=b—(a=2a);41-] (> 0).

Fixing a double bond in a cycle does not necessarily mean that single
and double bonds alternate in the cyele. For example, a double bond (b =
a) in the perimeter [b a a b a a b a a] of acepentylene decides the local
conjugated structure, but there is no alternation of single and double bonds
in the perimeter; however, this (b = a) precedes the rest in a cycle [b =
a-a=0b-a=a-"b=b-] of acepentylene. Not all locations between
vertices in a cycle uniquely determine the arrangement of double bonds. In
a path between d; and d;, intermediate vertices might be double bonded
to vertices external to the path, so that the bonds along the path are not
necessarily alternating single and double.
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In Eqgs.(10 - 12), the set of K {d;} need no to be a chan, even if d; precedes
Lthe rest.

A bond d; (or s;) is called "essential [8]” if it is in every Kekulé structure
of G. If d; is essential, then K{d;} = K{G}, and then p{d;} = 1. Hence,
if an essential double bond d; precedes d;, then 0 = p{s;} > p{s;}, that is,
p{d;} =1 (refer to Eq.(12)). Since p{z1 = z2} in 1q.(19) do not exceed 1/2,
none of essential double bonds is compatible with the preceding double bond
(z1 = x2).

(2) A preceding double bond d; oceurs in many polygonal skeletons. An
edge between z; and 2, in polyhexes is called "forcing [9]” if it determines
a Kekulé substructure. A list of cycles (4- to 8-membered), called "inclusive”
with respect to (b = b), is presented in [6]. In such an inclusive cycle, the
double bond (b = b) precedes all other double bonds in the cycle; therefore,
Eqgs.(17 - 20) are applicable to inclusive cycles.

A path (b (a)2;41 b (a)aksr b+ b (@)2ey b) (4, K,- -+, € = 0) is referred to
as "alternate” in [6]. In a cycle, composed of two alternate paths, a double
bond (b = b) precedes all other double bonds in the cycle; the perimeter

baaabaaababbaaabaaabal]
of zethrene is an example for such a cycle. A cycle,
(b (@)251 b (@)1 b---b (a)2era] (G Ky, £20),

is said to be "alternate” in [6]; the perimeter of azulene is a cycle of this kind.
In a local conjugated structure of alternate cycles, each of (b = a), {a = b),
and {@ = a), precedes and follows the rest, and the equality in Eq.(23) is
concluded; therefore, p{b = a} = p{a = b} = pla =a} = 1/2, and Iy = 1
for alternate cycles.

(3) 'lable | lists all 11 hexagonal cycles, each of which has at least one
double bond that precedes and/or follows all other double honds in the cycle.
Mirror images about the horizontal line and/or the vertical line are omitted.

In each local conjugated hexagon, a double bond is indicated by either &
if it precedes or & if it follows or 2 if it precedes and follows all other

double bonds in the hexagonal cycle. Neither (b b bbb o] nor bbb bbb

is included in Table 1. If there is 2 in a hexagonal cycle, then Eq.(24)
implies that one Pauling bond order is equal to another in the hexagon; for
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Table 1: All 11 hexagonal subgraphs with double bonds, each of which pre-
cedes and/or follows all other double bonds.
pEb-ata-aLa], [bﬁb":ra—a%fa—a'ér],
{bg—{a—b":fa—u.ga—], bLta-alb-ala
peb-bLa—ata-), PLb-a=b-ala]
[b—béafb;a—a&], [bp:rafb'érafbgu—]‘
b=b-b=b-ata-], PEb-bLa-b=0a-]
pEb—a=b-b=a-]

example, p{[b = acaab]} = p{baa=aad]} =p{lbaaaa=1"}
(Table 1, top, right). Table 1 presents three hexagonal cycles, [b b a a a a,
[babaaa]and [bababal, each of which has 2. the latter two alternate,
and hence, for example, p{(b=ababal} =p{lba=>baba]} = 1/2, and
Ip{[bababal} =1 (refer to Eqs.(23 - 25).

(4) Equation (18) is applicable Lo the estimation of upper and lower hounds
for K{G}. The first step is to find a conjugated cycle in G such that (z; =
7;41) precedes all other double bonds in the cycle. The second step is to
make up two skeletons; the one is G with (z; — 244y), and the other is G with
(z: = i41). The last step for the first skeleton is to remove the single bond
from (z; — z;41), and for the second skeleton is to remove the double bond
from (@; = x;41); thus, the conjugated cycle in G can be eliminated.

Let us consider a cycle [by a; as by as ag a7 as bg by (10-membered) of G;
two cycles, [by az as by bo] (pentagon) and [by a5 as az as by bio) (heptagon),
are connected by sharing only the path (by byo). The cycle is first contracted
by use of Eqs.(1 - 3):

l‘:{[f” ay ay l'J.g s Gy U7 Uy b“ bm]} =K {[(}[ IJ.1 l’)g [)m]}.

The double bond (b, = ay) precedes all other double bonds in the cycle
[y =02 — a3 = by — a5 = ag — a7 = ag — by = byo—]. Then Eq.(18) gives the
following:

2K{[b] = b4 bg l)m]} S K{G} S 2K{[1)1 el bq bg blu]},

2K{[[by = by by bio]} < K{G} < 2K{[by — ba by byo]},
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2}‘.—{&‘; bm {t‘; bg} _<_ K{G} S 2;\/{04 bm (0¥ !)g)},

2K{a} a0 ag} < K{G} < 2K {a1 ayg ao} + 2K {a) a0 ag}.

Glossary of Symbols

a;
a;
b;
b
d;

G

Ir{[- -]}
K{G}
K{[---1}
K{d;,d;,...}
T = Tiga }
plzi — T}
Si

T

T

(Ti = Tig1)
(i — Tig1)
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