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Abstract: The total m-electron energies of a phenylene and its hexagonal
squeeze are closely related: as a very gocd approximation,
their difference is equal to v8 (h - 1) pB-units, where h is
the number of hexagons in the phenylene or in its hexagonal

squeeze.

INTRODUCTION

A class of alternant nonbenzenoid conjugated hydrocarbons, that Pe-
ter Vollhardt named "phenylenes" [1], has recently attracted much atten-
tion. Thanks to the synthetic efforts by Veollhardt and his group, quite
a few members of the phenylene family became recently available [2,3].
Theoretical studies of the phenylenes [4-10] are mainly motivated by the
fact that phenylenes are composed of ({thermodynamically stabilizing)
six-membered benzene rings, separated by (thermodynamically destabiliz-
ing) four-membered cyclobutadiene-ring fragments, which results in
rather peculiar m-electron properties [2-10]. The structural principles
according to which the phenylene systems are designed should be evident

from the examples 1 and 3. If a phenylene has h six-membered rings, then
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we say that it is an [h]lphenylene. In particular, 1 is a [6]phenylene

whereas 3 is an [8]phenylene.
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To each [h]phenylene a unique catacondensed benzenoid system with h
hexagons is assoclated, which is referred to as the hexagonal squeeze of
the respective phenylene [9]. For instance, the hexagonal squeezes of 1
and 3 are 2 and 4, respectively. From these examples the construction of
the hexagonal squeezes should be evident; for more details on their
properties see [9].

In what follows a phenylene will be denoted by PH and its hexagonal

squeeze by HS. Both are assumed to posses h hexagons.
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The following remarkable relation between the properties of PH and
HS was recently discovered [9]: The algebraic structure count of PH is
equal to the number of Kekulé structures of HS,

ASC{PH} = K{HS} . (1)
For instance, the [6]phenylene 1 has 191 Kekulé structures, but some of
them are of even parity and some of odd parity. The molecule 1 has 104
even even Kekulé structures and 87 odd Kekulé structures, hence its
algebraic structure count is 104 - 87 = 17 . This, on the other hand, is
precisely equal to the number of Kekulé structures of the benzenoid hyd-
rocarbon 2. In our second example, the [8]phenylene 3 has a total of
1502 Kekulé structures, of which 782 are even and 720 are odd. Thus the
algebraic structure of 3 is equal to 782 - 720 = 62 . The benzenoid hyd-
rocarben 4 has 62 Kekulé structures

For more details on Eq. (1) and the structural relations between a
phenylene (PH) and its hexagonal squeeze (HS) the reader is referred to
the work [9].

Bearing in mind the result expressed by Eq. (1), one may expect that
other m-electron characteristics of PH and HS are also somehow related.
In this paper we show that this indeed is the case, and establish a re-
markably simple and fairly accurate approximation which connects the

total m-electron energies of a phenylene and its hexagonal squeeze.

ON THE TOTAL w-ELECTRON ENERGY OF PH AND HS

The HMO total m-electron energy of conjugated molecules and its de-
pendence on molecular structure has been studied in detail [11,12] and
this work should be considered as a further contribution along the same

lines. Exceptionally, this work seems to be the first which is concerned
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with the total m-electron energy of phenylenes.

The HMO model is often considered as outdated and of low accuracy
(see, for example, the discussion in [13]). In reality the situation is
slightly different, especially when the HMO results are used and inter-
preted with due caution; for an extensive discussion on this matter and
for numerous practical examples see the recent book [14]. In the case
of HMO total m-electron energy this point was elaborated in some detall
in the review [12]. Another recent example of how the results of HMO
calculations can be combined with, and utilized within the unrestrict-
ed Hartree-Fock (UHF) model of conjugated polymers is found in [15].

In what follows we anyway remain within the framewcrk of the HMO mo-
del, within which the use of graph-theoretical formalism is quite usual
(see [11-15] and the references quoted therein). Thus, our mn-electron
energy levels are just the eigenvalues of the respective meclecular
graph, whereas what we call “total m-electron energy" is simply twice
the sum of the positive graph eigenvalues. If G denotes a molecular
graph, then the respective total m-electron energy (expressed, as usual,
in units of the HMO carbon-carbon resonance integral 8 [11]) is denoted
by E(G) and is equal to twice the sum of the positive eigenvalues of G.
In other words, E(G) is equal to twice the sum of the positive roots of
the equation ¢(G, x) = 0 where ¢(G) is the characteristic polynomial
of G.

Because the molecular graph of an [hlphenylene has 6h vertices and
8h-2 edges, we have [16]

6h

$(PH, x) =« - (8h - 2) x™2 & «ov 4 (12" asc{PH}® . (2)

The molecular graph of the respective hexagonal squeeze has 4h+2 verti-

ces and Sh+1 edges. Therefore [16]
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4h+2 4h

#(HS, x) = x*™% - (5h o+ 1) ™ 4 een - K(HSY® . (3)

Bearing in mind Eq. (1), from (2) and (3) we readily conclude that
¢(PH, 0) = (-1)"" glus, 0)

and because K{HS} is always greater than zero [17],
¢(PH, 0)/¢(ES, 0) = (-1)"" . (4)
Define now a function g(x) as follows:

q(x) = ¢(PH, x)/¢(HS, x) . (5)

By performing polynomial division and by taking into account (2), (3) and

(4), the right-hand side of (5) becomes

q(x) = PR S Y B s s (- 9ty non—po%ynomial
residuum
Denoting by Q(x) the polynomial part of q(x),
Q) = F - 3(h - 1) X e (- M (6)

we may try to approximate the characteristic polynomial of PH as
¢(PH, x) = ¢(HS, x) Qx)
A proper censequence of this approximation would be

E(PH) = E(HS) + E[Q] (7

where E(Q) is the "energy" cbtained by formally treating Q(x) as a cha-
racteristic pelynomial. To be more specific, E[Q] may be calculated from
the coefficients of Q(x) by using the Coulson integral formula [11,12],
and thus by avoiding the finding of the zeros of Q(x). Needless to say
that there is no guarantee that the zeros of Q(x) are real-valued. On
the other hand, even if some of these zeros are complex numbers, E[Q]

remains a well-defined and real-valued quantity.
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Anyway, the approximation (7) must not be accepted before being
tested on concrete molecules. We will do this in a later part of this
paper and based on the numerical results obtained, we may conclude that
(7) is not so bad as it may look (from a formalists point of view).

A vast number of previously collected results in the theory of
total m-electron energy [11,12] leads to the conclusion that the gross
part (some 99.5% or more) of the total m-electron energy of an alternant
hydrocarbon is determined by the following three graph-theoretical para-
meters: (1) the number of vertices, i.e., the degree of the character-
istic polynomial; (ii) the number of edges, i.e., the second coefficient
of the characteristic polynomial, and (iii) the algebraic structure
count, whose square is just equal to (plus or minus) the last coeffici-
ent of the characteristic polynomial. It is plausible to expect that
such kind of regularity is applicable also in the case of E[Q]. If so,
then the three most significant factors influencing E[Q] would be (i)
the degree [= 2 h - 2] of the polynomial Q(x), (ii) the second coeffici-
ent [= -3(h - 1)] of Q(x) and (iii) its last coefficient [= (-1)"], see
Eq. (6). Notice that all three of the above factors are uniquely deter-
mined by the number of hexagons, h. Hence, by considering only those co-
efficients of Q{x) which are explicitly given on the right-hand side of
(6), we see that E[Q) will depend solely on h. By this we reach our
first general conclusion:

Rule 1. The difference between the total m-electron energies of an [h]-
phenylene and of its hexagonal squeeze depends principally on h.

For series of isomeric phenylenes (all having the same value of

h) this difference is nearly constant.
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At this point we wish to stress that Rule 1 is not obtained by some
rigorous mathematical reasoning, but by guessing, based on the form of
Eq. (6) and on certain anticipated analogles with., previously establish-
ed, properties of the total m-electron energy. Only numerical testing
can reveal to what extent is Rule 1 in agreement with real data. As it
will be shown in the subsequent section, not only Rule 1, but a much
stronger statement, namely Rule 2, are sufficiently good approximations,

Rule 1 may be understoocd as a statement that the difference between
the total m-electron energies of an [hlphenylene and of its hexagonal
squeeze depends principally on local structural features of either the
phenylene or its hexagonal squeeze. This seems to he a non-trivial ob-
servation, because the total m-electron energy itself is known to depend
on both local and non-local structural features [11,12]; typical non-lo-
cal structural parameters (on which the total m-electron energy depends
to a great extent) are the Kekulé structure count (K) and the algebraic

structure count (ASC).

AN APPROXIMATION FOR EI[Q]

The direct way to calculate E[Q] would, of course, be via finding
the zeros of the polynomial Q(x). With the limited knowledge which we
have about the coefficients of Q(x) (see Eq.(6)), this can be done only
by adepting further, more or less severe, approximations. Within the
theory of total m-electron energy such methods for approximating the
characteristic polynomial have been previously elaborated [18-21] (and
in all hitherto examined cases they lead to acceptable results). Their

application to Q(x) lead us to a trial fermula:
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5 etdsz ¢y 12
Qx) = [x = p) [x = —] (8)
P
where the parameter p has to be adjusted so that coefthJ(Q] = -3(h-1).

Note that cne of the assumptions behind formula (8) is that all the
zeros of Q(x) are real-valued. Since E[Q] is real-valued anyway, this
assumption 1s of little relevance for the below consideration.

Eq. (8) implies:

h-1 h-117__ _
—[ > e p]» 3th - 1)

from which it is evident that p is independent of h and that it satis-

fies the equation p + i =6 i.e. that p=3*v8 .

From this,

E[Q] = (h - 1)[(3 +vE)7% 4 (3 - fél”z]

which, by taking into account that (3 + v&)™% + (3 - vB)'% = VB , re-

sults in a remarkably simple expression:
E[Q] = ¥8 (h - 1) 3 V8 = 2.828427... (9)
Combining (7) and (9) we arrive at our final approximate formuia
E(PH) = E(HS) + v& (h - 1) . (10)

Note that, strictly speaking, the approximation (8) can be used only
if h is an odd number. However, we formally applied (8) alsc for even
values of h. The good agreement between the left- and right-hand sides
of Eq. (10), irrespective of the parity of h, provides a justification
for this mathematical inconsistency.

Consider, as an example, the phenylenes 1 and 3, whose structures

are shown in the introductory section and whose hexagonal squeezes are 2
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and 4, respectively. By using an appropriate computer program we calcu-
late that E(1) = 50.7113 and E(2) = 36.5389 . Applying Eq. (10) and not-
ing that h(1) = 6, we have E(1) = E(2) + (6 - 1) V8 = 50.6810 . Hence
in the case of the pair 1/2 the error of the approximation (10) is only
0.03 B-units (0.06%), what from a practitioner's point of view is
negligibly small. Similarly, E(4) = 48.2693 and E(4) + (8 - 1) V8 =
68.0683. On the other hand, the exact value of E(3) is 67.9979 and thus
in the case of the pair 3/4 the error of (10) is 0.07 f-units (0.10%).

Scme more numerical data, supporting the approximation (10) are col-

lected in Table 1.

DISCUSSION

Based on Egs. (9) and (10) and corroborated by the data from Table 1

we can formulate the following:

Rule 2. The difference between the total m-electron energies of an [hl-
phenylene and of its hexagonal squeeze is approximately equal to
¥8 (h - 1) and is basically independent of any other structural

feature.

In view of the fact that an [hlphenylene contains h-1 cyclobutadiene
fragments, we can interpret the above rule also in the following manner:
Rule 3. As a good approximation, the total m-electron energy of a phe-

nylene is equal to the total m-electron energy of its hexagonal
squeeze, plus increments coming from the four-membered rings.
These increments are basically independent of any other struc-
tural feature of the phenylene molecule, each being egual to
vB = 2.83 B-units.

As clearly seen from the data in Table 1, the accuracy of Rule 3 is

such that the E(PH)-values can be reproduced from the known E(HS)-values
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Table 1. Examples illustrating the precision of the approximation (10);
for convenience, instead of the phenylenes we indicate the na-
mes of their hexagonal squeezes (recall that naphthalene cor-
responds to biphenylene, anthracene to linear [3]phenylene,

phenanthrene to angular [3]phenylene etc.); v8 = 2.83

hexagon?;sfqueeze h E(PH) E(HS) E(PHh : ?(HS
naphthalene 2 16.5055 13.6832 2.82
anthracene 3 25.0103 19.3137 2.85
phenanthrene 3 25.0822 19. 4483 2.82
naphthacene 4 33.5144 24.9308 2.86
benz(a)anthracene 4 33.6019 25.1012 2.83
chrysene 4 33.6454 25.1922 2.82
benzo(c)phenanthrene 4 33.6461 25. 1875 2.82
triphenylene 4 33.7061 25.2745 2.81
pentacene 5 42,0181 30.5440 2.87
benzo (a)naphthacene 5 42.1095 30.7256 2.85
pentaphene S 42.1276 30. 7627 2.84
benzo(b}chrysene 5 42.1624 30.8390 2.83
dibenzo (b, g)phenanthrene 5 42.1631 30.8338 2.83
dibenz(a, h)anthracene 5 42,1875 30. 8805 2.83
dibenz(a, j)anthracene 5 42,1873 30. 8795 2.83
picene 5 42.2141 30.9440 2.82
benzo(c)chrysene 5 42.2144 30,9386 2.82
dibenzol(c, g)phenanthrene 5 42.2150 30.9362 2.82
dibenz(a, c)anthracene ) 42.2347 30.9418 2.82
benzo(g)chrysene 5 42.2605 30.9990 2.82
benzo(alpentacene 6 50.6141 36.3413 2.85
dibenzo(b, k)chrysene 6 50. 6788 36.4839 2.84
benzo(h)pentaphene 6 50.7669 36.6142 2.83
dibenzo(g, p)chrysene 6 50.8687 36.7953 2.81
dibenzo(a, 1)pentacene il 59.2094 42,1374 2.85
dibenzc(a, c)pentacene 7 59,2495 42.1875 2.84
octaphene 8 67.6539 47.6380 2.86
tetrabenzonaphthacene 8 67.9687 48.2014 2.82
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on at most two decimal places. In view of this, in Table 1 we give the

E(PH)-E(ES)
1

values of o

alse on only two decimal places.

As a concluding remark we wish to point out that for (catacondensed)
benzenoid hydrocarbons the dependence of total m-electron energy on mo-
lecular structure is fairly well understoed [12]. Now, Eq. (10) as well
as the Rules 1-3 enable that all the results knewn for the total m-elec-
tron energy of benzenoids are straightforwardly transferred to the phe-
nylene systems. Thus, for the first time, the structure-dependence of

the thermodynamic stability of a class of polycyclic conjugated non-ben-

zenoid hydrocarbons is understood to a significant degree.
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