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Abstract

A method of data analysis is presented, designed for the interpretation of
molecular property data in terms of additive increments relating to molecu-
lar fragments. It is based on a mathematical theory according to which any
function of several discrete variables can be decomposed into a sum of unique
orthogonal contributions, one from each cluster of variables. These mathe-
matical results provide a consistent scheme for defining and investigating the
contributions from molecular fragments to a given molecular property.

1 Introduction

This paper presents a survey of a mathematical toolkit for use in the field of quan-
titative structure-property relations. More specifically, its scope is the analysis of
experimental data on a molecular property, in terms of (additive) increments relating
to molecular fragments.

The typical application that we have in mind would be the development of an in-
crement system for the study of multiple substituent effects. Consider a class of
chemical compounds derived from a common parent compound by multiple substi-
tution. The basic idea of the method is to model a (quantitative) property of the
derivatives by a sum of contributions due to the various substituents, followed by
sums of contributions due to interactions between pairs of substituents, triples of
substituents, and so on.

For this purpose, a mathematical method has been developed in [2], and partly
published in [3], by which it is possible to decompose any real-valued function of
several discrete variables into a sum of unique orthogonal contributions, one from
each cluster of variables. Truncated expansions obtained by restriction of cluster



size yield best approximations in the least squares sense. Certain linear identities
provide means to test whether such truncation is numerically sufficient.

In the picture of multiple substituent effects used above, these mathematical results
provide

(i) an empirical definition of the contribution of a molecular fragment, as specified
by a set of substitution positions and the interactions among the substituents
sitting there

(ii) means to estimate the degree of complexity of those fragments that have to
be included when using a truncated cluster expansion as an approximation.

A summary of the mathematical derivations and characterisations developed in [2,3]
is given in an annex.

2 The basic procedure

As an introductory example, consider the class of benzene derivatives with sub-
stituents -H, -CHa, -OH, -NOg, or -CI at position 1, 2, and 4, and hydrogen every-
where else. Any such derivative is uniquely represented by a triple (X, Y, Z), where
X,Y, and Z specify the type of substituent at position 1, 2, and 4, respectively.
Given a quantitative property F, its value for the derivative (X, Y, Z) is denoted by
F(X.,Y,2).

Suppose now to be given the complete collection of data F(X,Y, Z) — measured
values, as a rule - of some property F under investigation, for all these compounds,
and to be asked to analyse the relationship belween the variation of property values
and the variation of molecular structure.

Adopting the familiar approach of additivity schemes, we try to model the property
values F(X,Y,Z) by a sum fi(X) + fo(Y) + f1(Z) of contributions due to the
individual substituents. Note that in this “Ansatz” a substituent may contribute
differently, depending on its position, 1, 2, or 4. This feature is of immediate impor-
tance in the case of a non-symmetrical parent compound, but it is also needed in
the benzene case, e.g. when analysing substituent effects on "*C-NMR spectra. If
we decide to use the familiar least squares error measure, the following problem has
to be solved: Determine three parameters fi(X), fa(X), fa{ X) for each of the five
substituent types, X = H, CHjy, OH, NO,, CI, (that is, altogether 15 parameters),
such that

S YN IFXY,2) - A(X) - L(Y) - fa(2))* = minimum.
XV Z

Let us assume that this approximation problem has been solved. If we were lucky to
pick an almost additive quantity, the residuals will be negligible, and we arc ready,
ending up with a simple scheme of additive substituent effects.

Otherwise there will be a more or less considerable residual term,

G(X.Y,Z) = F(X,Y, Z) - [i(X) — fo(¥) = [i(2),



thal needs Lo be analysed further. Continuing the approach of additivity schemes
by interactions terms, we try to model this residue by a sum of contributions due
to interactions between pairs of substituents, fi2(X.Y) + f1a(X, Z) + foa(Y, Z).
Using again the least squares error mcasure, the problem is to determine ihree
parameters fi2(X,Y), fla(X,Y), and f24(X.Y) for each pair (X, Y} of substituent
types (altogether 3 x 5 x 5 = 75 parameters) such that

SIS XY, 2) = el X, Y) = fral X, Z) = fau(Y, Z)]° = minimum.
XY Z

If after that there should still be a considerable residue, this would be interpreted
as an “indecomposable” 3-way interaction term, that is, a contribution due to in-
teractions between all three substituents at a time.

Given that also the second approximation problem has been solved, we end up with
an expansion of F(X,Y, Z) into a sum of contributions from clusters ol substituents
of increasing size: contributions from single substituents, followed by contributions
from pairs of substituents, and finally from triples. Amazingly, these highdimen-
sional nested approximation problems admit a very simple closed form solution,
involving only averaging operations.

For an optimum expression of this result, we introduce a constant term f, as the
level-0 approximation to F(X,Y, Z). That is, the function F(X,Y,Z) is expanded
as follows:

F(Xa Y,Z) = fD (le\’l’] 0)
+ LX)+ oY)+ fa(2) (level — 1) l
+ f(XY)+ fulX,Z2) + fu(Y,Z) (level —
+ ha(X.Y,Z) (level 3)

In this expansion the different terms are successively defined as best approximations
in the least squares sense as follows:

Level-0
Jo = best approximation to F(X,Y, Z) by a constant.

Level-1

[(X)+ f2(Y) + f4(Z) = best approximation to the level-0 residue by a sum of single
substituent terms.

Level-2

fil X, Y) + fia( X, Z) + f24(Y, Z) = best approximation to the level-1 residue by a
sum of pairwise interaction terms.

Leve}-3

J124( X, Y, Z) = level-2 residue, that is, the ultimate residue.

The solution parameters fy, f;i{X), and f;;{X,Y) are obtained as averages of the
original property values over subsets of derivatives with partly fixed and partly
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varying substituents, as follows:

fo (F(X,Y,Z))xvz

]

X)) = (F(X,Y,Z))vz — fo
f2(Y‘) = (F(XYY!Z)),\'z-fo

f(Z) = (F(X.Y,Z))xy — fo
fu(X,Y) = (FX,Y,2))z — [i(X) - L(Y) - fo
fulX,2) = (FIXY,Z))y — LX) - f(Z) - fo
falY, 2) = (FXY,2)x — R(Y) = f(Z) - fo
fraal X, Y;Z) = F(X,Y,Z) = flz(X,Y) — f1a(X, Z) = [aa(Y, Z)

=f(X) = LalY) = [u(Z) = fo

In these expressions brackets denote averaging over the subscript variables, so that
e.g.

(F(X,Y,2))xyz = 57° Lx Ty Tz F(X,Y,2),

(F(X,Y,Z)vz 577 Tx Ty F(X, Y, Z),

(F(X,Y,2))z = 5.y F(X,Y,Z),
where each sum runs over the five substituent types H, CHy, OH, NO,, CL
Using these formulas, the various cluster components can be most casily determined
directly from the collection of property data.
Which now is the benefit that can be expected from such exercise? By this procedure
the original data file is recast into another format, designed for a consistent interpre-
tation of data in terms of substituent effects. By comparing the cluster components,
information can be extracted about the effects due to the types of substituents, their
position, and their interactions.
Up to here we have been using the term cluster erpansion, while the title con-
tains the term cluster decomposition. This wording takes account of the fact that,
while starting with the idea of an expansion according to a scheme of successive
approximations, the final result is, in fact, a decomposition into a sum of mutually
independent terms, one for each cluster of substituents.

3 Extensions and supplements

The procedure outlined above can be generalized to arbitrary numbers of substi-
tution positions and substituent types. Moreover, it is not resiricted to the study
of substituent effects. It can, in fact, be used to analyse the effect of variations of
molecular structure on property data in every case where the variations of structure
are of multivariate type, i.e. if the structure variations can be parametrized - not
necessarily in a one-to-one fashion — by a set of independent variables with finite
range.

The mathematical basis of the method has been elaborated, in a lincar algebraic
framework, in ref. [3]. The mathematical object studied there is the Euclidean vec-
tor space formed by the real-valued functions of a finite number of independent



discrete variables. It furns out that this space decomposes into a series of orthog-
onal subspaces, one for each cluster of variables. The functions in such a cluster
subspace have two characteristic properties: their values do not depend on the vari-
ables oulside of the cluster, and they average to zero in any of the variables inside
the cluster. Owing to this structure, any function F of the given variables, say
T1, T2, s Ly, admits a unique cluster decomposition as follows:

F(z1,22, 00 %0) = fo+ 2 filwi) + 3 fuslwn,2))+

i<y

+ Z fiielzi, @iy 26) + oo+ froa(en, e, 2.
i< <k
The cluster components are obtained as orthogonal projections of the given function
F onto the various cluster subspaces. The corresponding projection maps can be ex-
plicitely constructed. Like in the preceding example, they involve nothing more than
averaging of function values over subsets of variables. The relevant mathematical
constructions are given in section A.1 of the annex.
After this briefl excursion into mathematical technicalities, let us return to the ex-
ample of benzene derivatives in order to illustrate other features and uses of the
mathematical results developed in refs. [2] and [3].

3.1 Problems relating to incomplete data files

Unfortunately the method requires complete data files. For the property to be
analysed the data must be available for all the derivatives that can be built by
placing substituents of a given collection of types to a given choice of substitution
positions. In the introductory example these are 125 compounds. In practice it is
an extremely difficult task to acquire complete property data files like this.

If the data file acquired is incomplete, but with only a moderate number of blanks,
the method of cluster decomposition can still be used on a heuristical basis. In
such a case some cluster terms cannot be evalnated rigorously, because of missing
terms in the averages. They can, however, be estimated by extending the averages
over those data that are available. Using this approach, it is possible to analyse
the available data, and, at the same time, estimate the missing data. However, we
should like to emphasize that the scope of this method primarily is data analysis
and data interpretation rather than data estimation.

3.2 Significance tests for maximum cluster size

For the purpose of analysing incomplete data files it would be nseful to have prior
information about the possibility to truncate the cluster expansion by restriction of
cluster size. In the case of benzene derivatives, for example, one should like to know
whether the 3-way interaction term is numerically significant, or whether even the
pair interaction terms can be omitted without any serious loss of accuracy.

This can be tested by using linear identities, as follows. Let us call a property -
representable, il it can be rigorously expressed as a sum of terms due to clusters of
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maximum size k. For example a property F(X,Y, Z) of triply substituted benzenc
derivatives would be l-representable, if it could be expressed as a sum of single
substituent terms,

F(X,Y.Z) = a(X)+ b(Y) + e(£),
and it would be 2-representable if it could be expressed as a sum of terms relating
to pairs of substituents,

F(X,Y,Z) = d(X,Y) +e(X,Z) + [(Y, Z).

In these expressions, we have only used maximun size cluster terms because they
incorporate all the terms relating to clusters of smaller size.

It can be shown by projection methods (comp. [3]) that a function F(X.Y,Z) is
I-representable if and only if the following identity holds for all values of XY, Z
and an arbitrary value of V.

P(X,Y,Z) = —2F(V,V,V) + F(X,V,V) + F(V,Y,V) + F(V,V, Z).
Similarly, F(X,Y, Z) is 2-representable if and only if

F(X,Y,Z) = F(V,V,V)= F(X,V,V)=F(V,Y,V) - F(V,V,Z)
+ F(X,Y,V)+ F(X,V,Z)+ F(V,Y, Z).

Spot checking of these identities - i.e. how badly they are broken — will provide
a preliminary impression of the magnitude of errors to be expected when using a
truncated cluster expansion as an approximation.

Section A.2 of the annex describes a general procedure for constructing such testing
identities for any given complexity k. In fact, these identities can largely be tailored
to meet the restrictions encountered in the highly incomplete dala sets that are
typically available in practice.

Identities of this type, relating to additivity schemes, have been discussed in the
physico-chemical literature quite a number of times, e.g. by Bernstein in his in-
vestigation on relations between molecular properties in homologous series [1], by
Kauzmann, Clough and Tobias in the presentation of their “Principle of pairwise
interactions” [4] in molecular chirality, and in the theory of “Chirality [unctions”
due to Ruch and Schonhofer [5].

3.3 Symmetry properties

The cluster decomposition is fully adapted to permutation symmetry. That is, if the
function F(X,Y,Z) has some symmetry with respect to permutations of variables,
any sum of cluster terms of a given size automatically transforms alike.

As a consequence, there are characteristic relations between symmetry-equivalent
cluster terms. Counsider, e.g., (1,3,5)-tri-substituted benzene derivatives. Due to the
symmetrical arrangement of the substitution positions, a scalar property F(X.Y, Z)
is invariant under all permutations of X,Y, and Z. This symmetry has a number
of consequences for the cluster terms, as follows.

fl(X) = fs(X) = fs(X)‘
fa(X.Y) = falY, X) = fis(X, Y} = fis(V, X) = fas(X,Y) = faslV, X).
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That is, the contribution of a substituent dees not depend on its position, and
neither do the contributions due to pairwise interactions.

[n any given casc, the complete set of symmetry relations for cluster components can
be constructed using group theory. similar to the construnetion of selection rules for
quantum mechanical matrix elements. The relevant tools are summarized in section
A.3 of the annex.

Symmetry based relations like this, with emphasis on psendoscalar (i.e. chiral) prop-
erties, have been extensively studied by Ruch and Schénhofer, compare, e.g., ref.

[3].

3.4 Interpretation relating to average substituents

The cluster expansion may be loosely interpreted as an expansion with respect to the
deviations of the substituents from their average, as follows. Suppose that an “av-
erage substituent type” © could be found, such that any average of F(.X,Y,7) over
a subset of variables coincides with the corresponding single value for the derivative
with @ in these positions. That is. e. g.,

(FIX,Y,Z))xyz = F(0,0,0),

(F(X,Y.Z))xy F(0,0.2),
(FIXY,Z))x = F(O,Y,Z).

Il

Then the cluster decomposition could be expressed as follows.

F(X,Y,Z) = F(0,0,0)- F(X,0,0)  F(0,Y,0)- F(0,0,2) +
(XY, 0)+ F(X,0,Z) + F(0,Y,Z) + residue

With an arbitrary “real” substituent type V instead of the hypothetical ©, the values
of F(X,Y,Z) can be expressed analogously. This might be viewed as an expansion
with respect to the deviations of substituents from a given standard type, say hy-
drogen. Such procedure, though lacking the benefit of optimality with respect to the
least squares error measure, may nevertheless provide a useful tool for rationalizing
and interpreting structure-property relations.

4 Summary

The mathematical procedures for data analysis presented in this contribution are
applicable to any collection of quantitative property data for any set of compounds
which can be parametrized by a set of independent parameters, such as a complete
set of derivatives of a given parent compound based on a specified set ol substituent
types. In the case of a complete set of compounds the result is a set of increments,
one for each cluster of the molecular fragments considered, intended to serve as a ba-
sis for developing an understanding, in molecular science terms, on how the properly
under investigation depends on the nature of the molecular fragments consiclered,
their spatial arrangement, and their interactions.
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In the case of an incomplete data set, the methods can be used for the same pur-
pose, with some loss of mathematical benefits. In addition, they can be used as an
interpolation scheme for estimating the missing data.

The degree of cluster complexity that is necessary for an appropriate representation
of the data under investigation can be assessed using specilic identities, one for cach
cluster size.

If the parent molecular structure posesses some symmeltry, and if the property un-
der investigation transforms according to an irreducible representation of the cor-
responding symmeltry group, the number of cluster components is greatly reduced
by symmetry relations. These relations can be constructed systematically, using
similar tools like in the construction of symmetry based selection rules for quantum
mechanical matrix elements.

Annex: Mathematical framework and main re-
sults

A.1 Cluster decomposition of the property space

Consider a composite system Y, built up from a finite number p of subsystems,
each with a finite state space'. Let the subsystems be labelled 1,2,...,p, and let
S1y52y .00y Sy denote their state spaces. Let the composite system ¥ be such that
each of its states is completely characterized by specifying the states of all the
subsystems. Then its state space is the Cartesian product € := Sy x 5, x ... x 5, of
the state spaces of its components.

The elements of 2 will be denoted by small Greek letters y.,o,... that is, g =
(11, g2y .-y ftp) denotes a p-tuple of subsystem states y; € S; (1 = 1,2,...,p).

With @ := &) x S x ... x S, taking the part of the state space of a composite
system X, real-valued functions F': @ — R are readily interpreted as (real number
valued) properties of the system in the sense that for p € Q the number F'(y) is the
numerical value of the property F', measured on an appropriate scale, for the system
in its state p. We may, e. g., consider F' to represent a measuring apparatus, and
F() to be the result of the corresponding measurement performed on the system
¥ in its state g

The main result of this section will be a decomposition,

F=3 Ja (A1)

Q<P

of any property I into a sum of (mutually orthogonal) components fq, one for cach
cluster @ of subsystems, that is, for each subset @ of the set P := {1,2,...,p} of
subsystems of . By virtue of this decomposition, any property of the compound
system is split up into a sum of contributions due to its clusters of subsystems.

"The terms finite space and finite set are used synonymously.
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Rewritten in the form

1.p Lp Ly
F=h+Y i+ fi+ 3 fart . (4.2)
1 i<y 1<j<k

the cluster decomposition may be interpreted as an expansion into a sum of indi-
vidual contributions f, of the subsystems, followed by corrections fi;, fij,... due
to interactions of increasing complexity: interactions between pairs of subsystems,
triples, etc. In this sum fo denotes a constant term (the grand average) which is
associated with the empty subset of P,

The object that we are now going to investigate is the property space of Q, that is,
the set X := R of all real-valued functions on . Elements of X will be denoted
by Latin letters F\, G, ... or f.g,... With addition of functions and multiplication by
real numbers defined pointwise in the usual manner, X becomes a vector space over

R of dimension |[Q] = s; -5z - ... - 5, where s; = |5;|. Morcover, X may be endowed
with the customary scalar produect,
< F,G>:=3 F(p)G(p) (A.3)
neQ

turning it into an Fuclidean vector space.

Let us now consider, for each subset® @) < P, the subset Xo < X of those properties
which only depend on the state of the cluster @), that is, which are independent of
the state of the complementary cluster P\(Q.

Xg:={f€X:pg=0g= flp)=f(o) for all p,o € 1} (AA4)

In this expression the following notation is used: Let x € €2, and let @ be a subset of
P =1{1,2,...p} with q elements (0 < ¢ < p). Then ug denotes the g-tuple derived
from g by restriction to the subsystems ¢ € @, that is, by restricting the domain of
the mapping represented by u to @ < P.

Evidently, all the X are linear subspaces of X. In particular, Xp = X, and X
(6 = the empty subset) is the 1-dimensional subspace of constant functions. There
are simple relations between the algebra of these subspaces of X and the algebra of
subsets of P, like the following:

XQﬁXR=.’\’QnR (A.5)

For the projection mappings onto these subspaces, the natural candidates are aver-
aging operators. To this end we consider the following objects: For any ¢ € P, let
A;: X = X be the mapping given by

AR (1, 2y oo ) 5= 870 ST Uy oy o1y By it oo fip) {A.6)
€5

Thus A; takes the average over the states of the 7-th subsystem,

2For typographical reasons the symbols < and < are (mis)used to denote the proper and general
subset relationship.
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Using these (mutually commutative) operators we may associate with any cluster
@ < P a mapping Bg : X — Xg as follows:

Bo:= ] A (A7)
i€P\Q

That is, By takes the average over the states of the complementary cluster P\Q.

It is easily verified that Bg is a linear mapping onto Xg, which is symmetric with
respect to the scalar product defined in the beginning, and idempotent. Hence By is
the unique orthogonal projector onto Xg. In addition the following relation holds:

BQ'BRKBan (A.8)

In view of the intention to attribute with any cluster a specific contribution to a
given property, these subspaces and projectors are not quite what we are looking for.
The reason is that a subspace X¢q < X contains all the subspaces Xy for any subset
R < . Therefore, given a property F and a cluster (), the cluster coniribution
Bg I incorporates contributions from every cluster contained in Q.

To meet these needs, we consider another series of subspaces, Yo < X, defined as
fOHO\YS:

Yo 1= {F € Xq : BrF = 0 for all R < Q) (A.9)

So Yg is the orthogonal complement of all the subspaces Xg which are contained
in Xg. From the definition given above, the following relations, valid for any two
subsets S, T of X, are easily proved

(i) Ys and Yy are orthogonal unless S =T

(ii) ¥s and X7 are orthogonal unless 5 < T

From this it follows that, for any @ < X, the subspace Xg is the direct sum of the
mutually orthogonal subspaces Yg, R < Q.

Xo=@P Yz (A.10)
RLQ

The orthogonal projectors, Cg, onto the subspaces Yy are obtained from the By,
using Moebius inversion, as follows:

Co= Y (-1)""Bg (A.11)
R<Q

where ¢ = |Q| and r = |R|.
Alternatively, the Co may be expressed as follows:

Co:= I Ai- [T01— Ag) (A12)
1EP\Q keQ

Summarizing these results, we have
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Theorem 1 The cluster spaces Yo (0 < Q < P) defined in (A.9) constitule a
decomposilion of the property space X into a direct sum of mutually orthogonal

X=@ e

Q<P

subspaces,

In the corresponding decomposition of an arbiirary function F € X,

F=73 fo

Q<r

the cluster components are given by fo = Cql', where the Cq are the projeciion
mappings defined in (A.11) or (A.12).

A.2 Significance tests for maximum cluster size

For any integer 0 < k < p, let us call a property F' € X to be k-representable if it
is a sum of contributions from clusters Q of size ¢ < k. Formally this means that
F is k-representable if and only if F' € X® where X® is the sum of all cluster
subspaces Xq for clusters @ of size ¢ < k.

XW= % X (A.13)
Q<P g<k

Replacing the Xg by Yo, this sum of subspaces is turned into a direct one:

XW= P v (A.14)
Q<P, g<k

The decomposition above implies that the orthogonal projector onto X®) is given
by
cH= 3 ¢ (A.14)
QP g<k

This result provides a test of k-representability as follows:
FeXW e F=cWF (A15)

with C¥) given above.

The right hand side of (A.15) constitutes a family of linear identities of the form

S alp,a)F(e)=0 forall pef (A.16)

o€Q

where the coefficients a(g, o) will be nonzero for almost all pairs y, o in general.
There are, however, much “shorter” identities for the same purpose, as indicated
in section 3.2. The approach chosen in ref. [3] for constructing identities like that
starts from the observation that (A.15) holds true for any projection map onto the
subspace X ) in place of the unique perpendicular projector ().
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[n search of other projectors onto X*) let us fix an arbitrary reference state 8 € Q
and define a family of mappings Dg : X — Xg as follows:

[DoF|(n) = F(rg + dp\q) (A7)
where the p-tuple jg + épy\q is defined as follows

i forie
(rg +dpoli := {"5" 1-0: : e IQ;\Q (A.18)

For any @ < P the mapping Dg from X to Xg is linear, idempotent, and surjective,
hence a projector onto X¢. Moreover, these maps multiply according to

Dy Dr = Dagnr (A.19)

thus exhibiting close analogy with the mappings By discussed in the previous section.
Indeed, the theory developed there can be copied (cf. ref. [3]), giving essentially
analogous results (that is, except for the loss of orthogonality of the subspaces
involved). In particular, corresponding projection maps £*) onto the subspaces
X® are obtained as follows:

M= 5 g (A.20)

Q<P q<k

where the &g are obtained from the Dy by Moebius inversion, like in the previous
section, eq. (A.11).

£g= 3 (-1)""Da (A.21)
R<Q
with ¢ = |@Q| and r = |R|.
In consequence
FeXW = p=¢gWp (A.22)

with %) given above.
After some arithmetic one arrives at another expression for the projection maps &%)
which provides an efficient criterion for k-representability as follows

Theorem 2 A function F' € X is k-representable (0 < k < p—1) if and only if
£ rfp—a—1
Bp) = 3 (-1)" ( . ) Y. Flug+rq) (A.23)
=0 1/ QePiQl=
Jor all states p € Q and an arbitrary reference state § € .

The examples in section 3.2 are constructed using a uniform reference state & =
(V, V, V). It should be noted that the reference state § can be chosen arbitrarily. This
freedom of choice permits the construction of testing identities which are tailored to
a given incomplete data file.



A.3 Symmetry properties

The cluster decomposition of a function #' € X is fully adapted to permutation sym-
metry. That is, if the function I' has some synnnetry with respect to permutations
of ils variables, then for any integer 0 < ¢ < p the sum of cluster terms fo = Cof”
for all clusters @ of size g automatically transforms alike. As a consequence. the in-
dividual cluster terms bear some inherited symmetry propertics, in particular some
cluster terms may vanish for symmnetry reasons. and there are characteristic relations
between different symmetry equivalent cluster terms.

For an example, let ' = F(x,y, z) be a function of three variables, and let its cluster
decomposition be expressed as

Fleyy,z) = ao+bi(x) + byly) + balz)+
e, y) + eaaly, 2) + ean(z,@) + dizsler, y, 7).
Moreover, let the variables =, y. = range throngh the same finite set 5.
1) Let F' be totally symumetric, i.e. symmetric with respect to permutations of all
its variables &, y,z. Then
by=bi=bi=b
€12 = €3 = ¢y = ¢ where ¢(y,2) = ¢(z,y)

diq3 is totally symmetric

]

Let /' he totally antisymmeiric, i.e. antisymmetric with respect to permuta-
tions of all its variables x,y, z. Then

ag =10
by=by=bs =0
€13 = g3 = ¢ay = e where ey, 2) = ~¢(r,y)
diys is totally antisymmetric
3) Let F' be symmetric with respect to permutations of  and y. Then
by = by
ey, ) = erz(2.y) and eyl y) = ean(y, v)

dyg3 is symmelric in z and ¥

4) Let £ be antisymmetric with respect to permutations of = and y. Then

ap = 0
by = —byand by =0
cip(y, @) = —ena(z,y) and e, y) = —ez(y,x)

dyz3 1s antisymmetric in = and y
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The systematic derivation of such symmetry relations proceeds as lollows. Let all
the variables p; have the same range S, that is, @ = § xS x ... x § (p copies). Let (&
be an arbitrary permutation group on P = {1,2,...,p}. Then this group acts on the
state space Q) by permutations of the variables p; as follows: For any permutation
g € ( let gi denote the image of an index 7 € P, and let gp denote the image of a
p-tuple g € Q. Then

lgnlyi := 1 (A.24)
"T'his action on £, in turn, induces an analogous action on the property space X = R%
lgF(gp) := F(p) (A.25)

Using this action, the following relationship results, where g@ denotes the image of
a subset @ < P under g € (.

9Bl = Byl (A.26)

The very same relationship holds for the perpendicular projections Cg in place of
the By,

gCo F' = CyogF (A.27)
Now let O be a G-orbit of subsets of P, that is, a sel of symmetry equivalent clusters,
and let C9 denote the corresponding sum of projectors,

P=¥ 6 (A.28)
Q€0

Then ¢C?F = C%¢F holds for any g € G and any F € X. From this it follows that,
for any 17 € X| CO ¥ transforms like I under the group (. The same is true for
any G-invariant set of clusters, that is, for a union of orbits instead of a single one.
Thus it holds in particular for the set of clusters of a given size.
For the rest of this section let the function & transform according to a l-dimensional
real representation of the group ¢, i.c.,

gF = 7(g)F" with r(g) = £1. (A.29)

Now let fo = Col' be an arbitrary term in the cluster decomposition of £, and let
fs0 be a symmelry equivalent term, where g € (/. Then fyg is related to fg by

Tvo =(9)afq (A.30)
or, more explicitely,

[foal(r) = () folla™ 1) (A.31)

Besides such relations between symmetry equivalent cluster terms, the cluster terms
A yeq
Jq have intrinsic symmetry properties, inherited from those of the function £, as
follows.
[fol() = 7(g)[fl(g™ " 1) for any g € Gy (A32)

[fal(r) = (gl fe](x) for any g € (7 (A.33)
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Here G and G denote the set-wise and the point-wise stahilizers of Q, respectively,
ie.Goi={geG gicQforallic @} and () ;= {ge G:gi=iforallicQ}
These relations imply that fo transforms according to the representation of the set-
wise stabilizer of @ subduced from that of (7, and that fg = 0 unless the restriction
of that representation Lo the point-wise stabilizer of @ is the identy.

Analogous relations can be derived for cases where F' transforms according o other
irreducible representations. Again these will be intrinsic symmetry properties in-
herited [rom those of the given I, and relations between terms from symmelry
equivalent clusters. In the case of representalions of dimension > 2, ihese rela-
tions will incorporate, besides the given £, its pariner(s) which together span a
G-invariant subspace of X, that is, a representatbion space of the group (7.
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