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Abstract: Polygonal systems (P) correspond to polycyclic conjugated hydrocarbons. The
(cyclic polygonal) pyrene isomers (ClGHm) belonging to the class P are enumerated.
The resulting 965 isomers are specified in terms of polygon sizes within the five
subclasses: n; = 0 (branched and unbranched), n,=123. Here n; is used to denote the

number of internal vertices.

Enumerations of chemical graphs corresponding to different classes of molecules are of
current interest in mathematical chemistry. Some time ago an enumeration of ClﬁH10
(pyrene) tetracyclic polygonal isomers among completely condensed polycyclic
conjugated hydrocarbons was reported in this journal [1]. That work included depictions
of the relevant forms, but several of them must have been inadvertently omitted, as has
been documented recently in an article entitled "The number of pyrene isomers is still
unknown" [2}. This statement is no longer true. In a series of works [3] the enumeration
problem was solved completely, not only for pyrene isomers, but for all structures of the

class of interest with numbers of rings r < 5 (pyrene has r = 4).
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In some of the cited works [3] generating functions are employed, a useful tool in
different kinds of enumerations [4]. In the present work the generating functions which
pertain to the pyrene problem are quoted and used to deduce the total number of
isomers. Furthemore, all the forms of these pyrene isomers are specified for the first

time.

Classes of hydrocarbons. The completely condensed polycyclic conjugated hydrocarbons
are represented by polygonal systems, P. A system P is defined as a geometrical
arrangement of simply connected polygons, where any two polygons either share exactly
one edge or are disjoint . Four polygons (r = 4) may be arranged into P systems so
that the n; number of vertices is 0, 1, 2 or 3; the last possibility has been overlooked in
some of the earlier works [1, 2]. In the case of n; = 0, the subclasses of branched and
unbranched (catacondensed) systems are distinguished.

The five subclasses to be taken into account are exemplified in Fig. 1.
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Figure 1. The five subclasses of polygonal systems (P) with four polygons each (r = 4).

Codings of the forms in terms of polygon sizes (4, j, k, I) are indicated.
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The polygons represent g-membered rings, where ¢ > 3. The sizes (g) of the four rings
are symbolized by ¢, 5, kand L.
A chemical formula Can is associated with any P system. Given a formula, the

number of polygons is determined. The relations
s=Jg—dr-n.+4¢, n=s5+2r-2 (1)

are generally valid for P. Here Zg is the polygon—edge sum. For r = 4, the case of

interest in the present work, one has B¢ = i + j+ k + [, and consequently:
s=i+j+k+l-n—-12, n=s5+6 (2)

Numbers of isomers. The subclasses of P isomers (r = 4) with different values of n, are
considered separately. In each case, the generating function (3] is specified in the

following as

U= § (“1) (3)

=min
where #1 X identifies the numbers of C,_H_ isomers for the subclass a = a, b, c,dore (cf.
Fig. 1).
a: Branched catacondensed (n; = 0) P systems.
o

(z) = 2 (als)z‘q = ::3(1+z3+2z3+z‘+zﬁ)(1-:)_2(1-~a:3)_2(1—z3)42
=3

= 734224+ 625+ 1425+ 2827+ 5228+ 9329+ 1522104242114+ 370212+ ... (4)
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Here the coefficient for 7! (underlined) indicates the 152 Cwl{10 isomers belonging to
the subclass a.

b: Unbranched catacondensed ("z' = 0) P systems.

bI(Z) = 2 (bf s)zs = 22(1—z+222)(1—z)‘3( 1_21)—3
s=2

= 7242234824+ 1625+ 3828+ 6827+ 12878+ 20829+ 3432104518114 T84 124 . (5)

c: P systems with one internal vertex ("’z' =1).

)=} CL) = d1+2)(1-2) (1292
s=1

= o+322495%+ 19214+ 3825+ 6625+ 11027+ 17028+ 25528
+3652104-511241+693212+4 ... (6)

d: P systems with two internal vertices (n, = 2), which are connected.

dl(z) = Z (dIs)z" = (1—-;—)_2(1_32)—2
=0

= 142z+522+8x3+14x4+20x5+ 30x6+4+40x 7+ 55x 84+ T0x?
+91x10+112x 124+140x124- ... (7

Among the 81 C,H,, isomers of this subclass one finds pyrene (fori=j=k=1=6).
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e: P systems with three internal vertices (ni = 3).

Koy = § (°1)c" = (1~ (1ot (1-29) ]
s=0

= 1+7+2224+323+4244+- 525+ 720+ 827+ 1028412794 142104+ 162114192124 .. (8)

The total number of CIGHID isomers among the polycyclic conjugated hydro—
carbons represented by P is — cf. eqns. (4)—(8) — 152+343+365+91+14 = 965.

Forms of isomers. Codings for the forms of the isomers within the five subclasses under
consideration, are indicated in Fig. 1. All the isomers are listed by these codes in Charts
A - E for the subclasses a — e, respectively. In the cases A and B, the codes in terms of
polygon sizes (3, j, & [) are usually not sufficient to specify all the individual isomers
because there may be different combinatorial possibilities for annelations of polygons.
Therefore a parameter ¢ is added (after a colon) to the code in these cases, indicating the
number of possible annelations.

In the present analysis it is allowed for polygon sizes ¢ > 3 with no upper limit.
Nevertheless, g has a maximum value for the different subclasses, viz. 13, 12, 14, 14 and
14 for a — e, respectively. In the work of Reference [1] only the polygon sizes 3 < ¢ < 9
were considered. The isomers which comply with this restriction, are marked with

asterisks in Charts A — E.
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a: Branched catacondensed ("“1' = 0) P systems. The pertinent codes and a values
(numbers of annelation schemes) are specified in Chart A. The example in Fig. 1 has the
code (8)(6,5,3), for which a = 6. The corresponding six schemes of annelation are easily
deduced and shown in Fig. 2. Similarly, it is assumed that the different annelation
schemes are easily obtained by a piece of combinatorial reasoning, so that the detailed

specifications are not needed here.

Chart A

<7
Branched catacondensed °
(Y @G

13) (3,3,3):8 9) (6,4,3):10* 7 (9,3,3):2*% 6) (9,4,3):1*
12) {4,3,3):16 9) (5,5,3):6% 7 (8.4,3):3* 6) (8,5,3):1*
11) {5.3.3):12 9) (5.4.4):6* 7) (7.5.3):3* 6) (8,4,4):1*
11) (4,4.3):12 8) (8.3.3):4* 7) (7.4.4):2* 6) (7.6,3):1*
10) (6,3,3):9 8) (7.4.3):6* 7) (6.6.3):2* 6) (7.5.4)1
109 (5.4.3):15 8) (6.5.3):6* 7) (6.5.4):3* 6) (6.6.4):1*
10) (4,4.4):4 8) (6.4.4)-4* 7) (5.5.5):1* 6 (6.5.,5):1%
(9) (7,3,3):6* 8) (5,5,4):4* 6) (10,3,3):1

Figure 2. The six isomers coded (8)(6,5,3) in Subclass a.
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b: Unbranched catacondensed (ni) P systems; see Chart B. The example in Fig. 1

is (8,5)(6,3), for which a = 10. The corresponding ten schemes of annelation are depicted

in Fig. 3.

Chart B
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Figure 3. The ten isomers coded (8,5)(6,3) in Subclass b.
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c: P systems with one internal vertex (n, = 1); see Chart C. The example in Fig 1

is (8,6,5)(4). The three polygons which share the internal vertex, are found to have seven

free edges which all are distinct (symmetrically nonequivalent) and available for

annelation. Hence a = 7 in this case, in consistency with Chart C.

Chart C
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d: P systems with two internal vertices (n. = 2); see Chart D.

3); see Chart E. One of the

e: P systems with three internal vertices ("’z‘

polygons is fixed to be a triangle, as manifested by ! = 3.
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Chart D

Two internal vertices
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Chart E

Three internal vertices

—_
=2
o
s
=
—
™
=




- 34 =

Figure 4. A system coded (3,3)(10,10), not included in the class of P systems.

Not included systems. Figure 4 shows a system of polygons, which has n, =4 and B¢ =1
+ j+ k + [ =26. Thus it obeys eqns. (1), (2), and it does correspond to a tetracyclic
polygonal conjugated hydrocarbon; the depicted example (Fig. 4) has the pyrene formula
CygH g Nevertheless, this structure is not counted among the pyrene isomers because
the system violates our definition of P; a pair of polygons share two edges.

The system of Fig. 4 belongs to a class with four internal edges (ni = 4) and two
polygons fixed as triangles (k = [ = 3). It is reasonable to adopt the code (3,3)(1,5) for
these systems. Then all the five CISHIO isomers belonging to the subclass in question
are given by: (3,3)(15,5) (3,3)(14,6), (3,3)(13,7), (3,3)(12,8), (3,3)(11,9), (3,3)(10,10).

The generating function for the f! A numbers of Can isomers of the kind as in Fig.

4 was found to be:

f’(:‘:) = 2 (f:'s)z‘Sr = (l—z)_1(1._32)—1
=0

= 14242224+ 273+ 324+ 325+ 428+ 4174 528+ 529+ 6210+ 67114 Ti2 + ... (9)
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This counting starts with a carbon cluster CG'

Many other tetracyclic conjugated Clﬁﬂlo systems do not belong to the class P

and are not included in the present analysis, e.g.:

In addition, many CmH10 hydrocarbons are not tetracyclic, e.g. ethynyltolanes,

diethynylbiphenyls, diphenylbutadiyne.

Concluding remark. Among the 965 P systems of Clﬁﬂlo isomers, the subclass with
polygon sizes 3 < g ¢ 9 (marked with an asterisk in Charts A—E} may be of interest.
From the present analysis their number is found to be 634 and not 420, as has been

claimed previously [1].
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pointed out an error in the original eqn. (9).

References

(1] J.R. Dias, Match 14, 83 (1983).

[2] S§.J. Cyvin, B. N. Cyvin and J. Brunvoll, Match 50, 73 (1994).

[3] S.J.Cyvin, J. Brunvoll and B. N. Cyvin, Chem. Phys. Letters 205, 343 (1993); J.
Brunvoll, B. N. Cyvin and S. J. Cyvin, Computers Chem. 17, 291 (1993); B. N.
Cyvin, J. Brunvoll and S. J. Cyvin, Computers Chem. 18, 73 (1994); J. Brunvoll,



(4

- 36 -

B. N. Cyvin and §. J. Cyvin, Z. Naturforsch. 48e, 1017 (1993); S. J. Cyvin, B. N.
Cyvin and J. Brunvoll, J. Mol. Struct. 300, 9 (1993).

F. Harary and R. C. Read, Proc. Edinburgh Math. Soc., Ser. II 17, 1 (1970); G.
Pélya and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and
Chemical Compounds, Springer—Verlag, New York 1987; S. J. Cyvin and J.
Brunvoll, J. Math. Chem. 9, 33 (1992); B. N. Cyvin, J. Brunvoll, R. S. Chen and
S. J. Cyvin, Match 29, 131 (1993).



