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ABSTRACT: A new approach to treat the conjugated-circuit
model on regular conjugated polymers is made with computational
effort comparable to that for corresponding tight-binding models.
First a translationally symmetric arrow assignment is used to
construct an antisymmetrically signed "adjacency” matrix. Then
symmetry blocking is used to manipulate this "adjacency” matrix,
and make the associated conjugated-circuit computations. A
consequent detailed description of m-electron resonance energy is
presented for families of benzenoid and near-benzenoid polymers.
including linear and zig-zag phenylene polymers, and so-called

"“azulenic" polymers.

1. INTRODUCTION

Clar's classically developed ideas concerning aromaticity of
conjugated hydrocarbons ! may be viewed[?) to have been given a
quantitative realization through the work of Herndon [ and of Randi¢ 1.

Randié's description emphasizes the graph-theoretic aspects and has been
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termed the conjugated-circuit model. This method has been successfully
used to study both finite conjugated molecules ¥ and extended systems (©.
Theoretical quantum-chemical foundations of the model have been derived
from quantitative resonance-theoretic ideas via a so-called Simpson-
Herndon model 7.

The concept of conjugated-circuit can be described clearly in a
graph-theoretic manner in terms of Kekulé valence structures. A
conjugated n-circuit in a Kekulé structure is an n-cycle of alternating single
and double bonds. In his aromatic sextet structures, Clar ") represented a
conjugated sextet as implicating aromatic stability. A further stabilization
was also viewed to arise from a mobility of the sextets, indicated by arrows
over the spanned region. The correspondence between Clar's structures and
conjugated (4n+2)-circuits is indicated in FIGURE 1. A 6-circuit relates to
an aromatic sextet, while 10- and 14-circuits relate to their mobility. In

general, the conjugated-circuit resonance energy is
RE = E)](Qm Ham + Ry #gma2)/K (1)
mz

where #, is the number of conjugated n-circuits summed over all Kekulé
structures, @, and R,, are parametric values corresponding to 4m- and
(4m+2)-circuits, respectively, and K denotes the count of Kekulé
structures. The graph-throretic counts in (1) have often been done by hand
for various smaller benzenoids. A powerful algorithm for such counts via
"transfer matrix" has been employed for the cases of regular polymers ©
and of those finite molecules comprised from several like "monomer”

units.
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Clar's structures Conjugated-circuits

Q@ = O
e = CO
oo = CCO

FIGURE 1 Correspondence between Clar's structures and conjugated
circuit.

In the present paper, we develop another effective computational
technique, which was introduced recently to study elemental carbon cages®
but which traces back to earlier work by Kasteleyn ) to count Kekulé
structures for regular lattices. In this scheme, one assigns an arrow for
every edge, so as to identify an antisymmetrically signed "adjacency"
matrix S. The quantitative conjugated-circuit computational scheme we
develop in the third section gives the desired ratios #,/K in terms of the
elements of suitable n by n submatrices of S™'. With the achievement of
translational symmetry for the arrow assignment the construction of these
matrices for infinite polymers is accomplished by a transformation to
wave-vector space where a numerical integration is performed. The
consequent automated scheme has an advantage over the earlier transfer-
matrix scheme: in the present scheme the size of the symmetry blocks to be
manipulated grows linearly with the number of m-centers per unit cell (just
as for Hiickel theory), rather than exponentially with the number of links

between unit cells. In the fourth section here, we use our present automated
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method to treat about a dozen different benzenoid polymers as well as
about a dozen near-benzenoid polymers, such as linear and zig-zag

phenylene polymers, and certain "azulenic" polymers.

2. SIGNED ADJACENCY MATRIX AND CONJUGATED-CIRCUIT
COUNT

The use of a signed adjacency matrix to obtain conjugated-circuit
counts has been formulated in detail ®). The standard adjacency matrix A
for a graph G reads as:

A=

1 Ji~j in G
7

0 Jidj in G @

where i ~ j denotes bonded vertices in G. The signed adjacency matrix S

derives from A with matrix elements
S,-j =ZA ij (3)

where the sign is decided as indicated by Kasteleyn ”). Alternatively, we
express this signing process by making the graph directed: each edge {i, j}
has an orientation ( indicated by —>— ) such that

i—>—j <& S§;=-1 and §;=+1 4)

In Kasteleyn's method which applies for any planar graph G, an § is
constructed with the independent rings odd-oriented in the sense that
around the periphery of each such ring there are an odd number of arrows

in the clockwise direction. Then [
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det S = { K(G) )2 (5)

Now a further graph-theoretic result is

#(G) mcycle
g"}(G—F 2 2fc(G) (©)
G2C

where the sum is over all n-cycles of G, and f(G) denotes the fraction of
Kekule structures containing a given conjugated circuit around a cycle C of
G. Next it turns out [® that a further evaluation gives us our desired result

fdG) = { det(§7)c,c )12 M

where ( S7')c.c denotes the submatrix obtained from S™' by collecting the
rows and columns of C. The odd-oriented assignments for finite planar
graphs, especially for elemental carbon cages have been described and

programmed 8,

Q@@ @@

FIGURE 2 Polymers with odd-oriented rings constructed so as to
retain translational symmetry.
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The arrow assignment problem is more severe if we demand that it
preserve (e.g., space-group) symmetry. That it can be done (sometimes at
least) is indicated in the two examples of FIGURE 2. For regular polymer
chains such assignments are in fact usually relatively easy to realize.
Ordinarily unit cells (i.e., monomer units) may be chosen to consist of
whole rings some edges of which are free in the sense that they are
contained in no more than one ring. For a translationally symmetric
assignment one need only properly correlate the arrows on the
corresponding edges adjoining (say by fusion) to adjacent cells, and the
free edges may be assigned last in any way to achieve odd orientation. See,
e.g., FIGURE 3. If some rings contain no free edges (as can occur for wider
polymer strips), then: first imagine the free edges of a unit cell erased,
whence a "new" polymer cell with new free edges appears; second make
arrow assignments for this "new” polymer to achieve odd orientations for
its rings; and third add back in the original free edges making a suitable

assignment to odd-orient the remaining rings they give rise to.

a b c d
FIGURE 3 A unit cell in (a) for the second polymer of FIGURE 2. In
(b) one (of two) correlated assignments of the two edges fused to
adjacent cells is made, and in (c) one of two assignments of the
remaining non-free edge is made. Of the 16 (and 4) ways to assign
the 4 (and 2) free edges in the hexagon (and square) half must be
odd-oriented and half must be even-oriented, the final choice of (d)

being one of the 16 making both the hexagon and square odd
oriented.
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If instead of linear chains one deals with 2-dimensional networks, the

constraint of 2-dimensional translational symmetry is even more severe.
Though there are no free edges in such circumstances, one still can often

find (19 a solution, but we do not go into this problem here.
3. SYMMETRY BLOCKING

Here we develop the computational method involving the
antisymmetrically signed "adjacency” matrix S which has translational
symmetry. Granted such a translationally symmetric arrow assignment, we
define intracellular and intercellular signed local "adjacency" matrices Z

and X, with elements

-1 ,m —>—n within unit cell ®)

+1 ,m —<— n within unit cell
Zmn = :
0 ,otherwise

-1 m —>—n with me (a) and ne (a+1) (9)

+1 m —<—n withme (a)and ne(a+1)
Xmn = ;
0 ,otherwise

where (a) labels the a th unit cell (or monomer unit) along the length of the
polymer and m,n label nt-centers within each unit cell. The signed matrix S

for the full polymer is given as
Sa,m,' bn= a,bzm,n + ‘Sa-l-l,b Xm,n - ‘Sa-l,b Xn,m (10)

Now we introduce the unitary matrix U with elements

Ua.m; kn= am,ne_iak/w 1)
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where N is the number of unit cells (the N — oo limit being taken at a later

stage). Now S is readily block-diagonalized

(UTSU)k,m; k'n= 5.!:, k'A(k)m,n (12)

where the k1 block is A% and
A(k)m,n = Zm.n ¥ eki ¥ Xm,n i ei k Xn,m (13)
yk=2ma/N, a=1,2,..,N
Thence, we obtain the inverse of S as

st=vatut (14)

with elements

1 s =
S s avin= 3y 2 € T LAON as)

Here we are guaranteed an inverse so long as the polymer graph supports
Kekule structures, as is seen from (5). For the asymptotic N — eo (high-

polymer) limit, (15) yields

+T
1 o Yo
BN avdn=grs |- ASN ] il (16)

-

Here AW is generally a complex matrix, with components €24 and €2, in the

real and imaginary directions,
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A(A)= Q] + I QQ
Q;=Z+ (cosk) (X -XT) an
Q,=—(sink) (X + X1)

One way to avoid complex arithmetic is to collect together the +k and —k

terms and (back) transform to a real result,

Q]'l‘l'.Qz 0 Q] 92
— (18)
{ 0 Q,—in] {—Qz Q,]

Alternatively inverses .QI_I and
V=(+ 207 Q) (19)

typically seem to exist, and one can manipulate (16) to the form

+n
1
(S um: a+6n= 357 | (COSKBV y y+sinkDQ T QVY T n )}k (20)

-

Clearly, Q, is skew-symmetric, and Q, is symmetric, so that anti-
hermiticity of A is maintained. Combining the results of (6) and (20), one
has

#; ¥
—'K@ = [ det (S )ignysirny 112 (21)
where i(n) =iy, Iy, i3, ..., iy is a cyclic sequence of n sites. Thence, we

have achieved our desired result.
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4. COMPUTATIONAL RESULTS

The method for obtaining $™! is via numerical quadrature of (20).
One simple common technique for this purpose is Simpson's rule if we are
able to evaluate the integrand at a suitable set of points in the interval [,
+m). In (20), the integrand is a matrix function so that matrix operations
have to be done at the desired quadrature points. The criterion used to stop
the refinement of the numerical-integration procedure should clearly be
based on a comparison between successive estimates obtained after
increasing the number of quadrature points by a factor h say of & = 10.
(Further the computations with two different densities of quadrature points
can easily be extrapolated to yield an even better estimate "'} For our
application here the criterion for convergence taken was £ = 1.0x107,
which generally may require about 10° quadrature points.

Application has been made to a variety of conjugated polymers,

using parameter values from Randié et af'?

R,=0.869 eV Q,=-0.781 €V
R,=0.247 eV 0,=-0222eV
Ry=0.100 eV 0y =—0.090 eV

though for the benzenoid polymers only conjugated circuit contributions up
through 10-sites have been retained (the contributions from 4n-circuits
being exactly 0 by theorem {131,
i). Benzenoid Polymers

TABLE 1 lists the benzenoid polymers studied. All of them have
been investigated using the transfer-matrix technique %), though focus
previously was on an associated long-range spin-pairing order and its

relation to Hiickel band gaps. Here we report new results concerning local
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TABLE 1 Conjugated-circuit counts and resonance energy for benzenoid

polymers
Ko Polymers 6-circuits | 10-circuits | RE expresssions| RE/e
I 5,=0.00000 | 1,=0.00000 0.0000
Y 1,=0.00000
n “.’ $,=0.00000 1,=0.00000 0.0000
5,=0.00000 | 41=0-00000
1 1,=0.00000 0.0000
$=0.00000 | | 60000
5,=021822 1,=0.21822 (45, +45,)R,
v 1,=0.17267 +(21)+41, 0.1037
5=0.17267 | . -0.04555 +2t)R
A s 20
$,=0.25000 | 1,=0.12500 (4s,+4s,)R;
v 0.1107
5,=0.12500 | $,=0.00000 +(8t,+24,)R,
1,=0.16341
=0.21289 ]—0 14243 ety
Vi e e Hdy+a, | 0.1104
5,=0.14843 | 15,=0.06446
+213+219)R,
14=0.00000
- 5;=0.37500 1,=0.12500 @259k, | 0114
$,=0.12500 +24R,
VI 5,=0.25000 | ;=0.16667 (4s+259)R,;
5;=0.11111 | 1p=0.05556 | +(2t,+81)R, | 0-1253
X 5;=0.27639 | 1,=0.17028 (4s;+4s,5)R 0.1411
X $7=0.50000 23R, 0.1448
5,=0.35355 1,;=0.14645 (4s;+4s5,)R;
=0.03033 +(81742 0.1458
X 517014645 | *0.00000 o
g=0s 1R,
5,=0.34929 | U=010757 | (s +dsR,
=0.08627 +(41,+8 0.1553
X1 5,=0.10757 2= 1%
13=0.00000 +4ty)Ry
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contributions to the resonance energies. In our TABLE 1 the first column
assigns an identification number. The second column gives the polymer n-
network, with the dotted lines dividing unit cells. The third and fourth
columns of TABLE 1 give the fractions of Kekulé structures containing
conjugated 6- and 10-circuits around given cycle fragments. The fifth
column lists the formulae for resonance energies per unit cell for each
polymer. In the last column, the conjugated-circuit resonance energies per
m-electron are given. and are found to agree with previous transfer-matrix
results (). (Some authors ' do not count species VII and X with "bridge”
bonds as benzenoids, though Clar ! seems to include them. Certainly VII
and X must be more benzene-like in ordinary chemical senses than the so-
called "benzenoid" species I, II, and IIl. Indeed we will see that X is
naturally viewed to be the first fully benzenoid member of a sequence of

benzenoid polymers.)

a0
%

FIGURE 4 Clar's formulae for two benzenoid polymers
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The results of column 3 in our TABLE 1 may be used to define a
local hexagon resonance energy, or equivalently a local aromaticity index,
2R, fc for each particular 6-cycle fragment C. The hexagons with larger
values of localized resonance energy should correspond to circles drawn in
Clar's preferred aromatic-sextet structures, such as illustrated in FIGURE 3,
and in accord with a study [!5! earlier made for finite benzenoid
hydrocarbons. There are three cases of zero-weight contributions for 6- or
10-cycle fragments, which then are anticipated to be "nonaromatic". The
first case is as in V and XI, and gives O regardless of chain length N. The
second and third cases only approach a zero-weight asymptotically: the
second case as for VI and XII approaching 0 exponentially fast with chain
length N; and the third case as for I, II, and III only approaching 0 as an
inverse power of N. The tendency towards stability can be understood as in
previous discussions to correlate with resonance energy.

ii). Fully Benzenoid Polymers

Notably the most stable (i.e. highest resonance energy per site) of all
the polymers is the last (XII) which is fully benzenoid (meaning [V there a
Clar structure for which every m-center belongs to one aromatic sextet
ring). See FIGURE 5, where besides the fully benzenoid nature of XII we
also note the fully benzenoid character of the fifth member of the
"polypolyphenanthrene” polymer class, the first and second members of
which are species IX and XII. Indeed every third member of this family of
polymers may be seen to be fully benzenoid (as also is supported by
computations made elsewhere (91). Another family of which every third
member is fully benzenoid is that with first and second members being
polymers X and VII of TABLE 1, and with fourth (fully benzenoid)

member indicated in FIGURE 6. The first member of this sequence (X)
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exhibits no possibility of mobility of its Clar sextets so although it is very
stable (as judged by its RE/e) it is less so than the nonfully benzenoid
species XI. Such does not occur for the higher fully benzenoid species in
this sequence. Yet further fully benzenoid polymers can be obtained from
any one of those already identified by erasing (in a translationally
symmetric fashion) boundary (or "free") bonds not contained in one of
Clar’s aromatic sextets. Thence a wide range of fully benzenoid polymers

are possible, and seem to be of special stability from the current evidence.

e20Cececace
g@'@'@'@'@’ |

FIGURE 5 The preferred Clar structure identifying the two
associated polymers as fully benzenoid.
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FIGURE 6 Another fully benzenoid polymer.

iii). Polyphenylenes

Polyphenylenes contain classical antiaromatic cyclobutadiene rings
and aromatic benzene rings alternating with one another and have attracted
both synthetic organic chemists 1”1 and theoretical chemists ['31%]. Some
syntheses of (shorter) [N]phenylenes have been achieved. A recent
theoretical study has appeared discussing resonance energy and frontier
orbital separation 1), In order to determine their aromatic stabilities, we
calculate the conjugated n-circuits (n = 4, 6, 8, 10, 12, 14) for linear and
zigzag phenylene polymers using our present computational technique.
Here in TABLE 2 we note that there are several relations between the
various n-circuit counts which hold for infinite length chains. Both for
linear and zigzag [N]phenylenes, such relations are only approached
asymptotically as N increases (see FIGURE 7). In agreement with Ref. 19,
the linear structure is predicted to be more stable than the zigzag, and the
linear phenylene is expected to be an unusual quasi-one-dimensional
organic conductor with a novel electronic structure.
iv). Azulenoid Polymers

Another kind of interesting class of polymers is that of the "azulenic"

polymers as indicated in TABLE 3. The computational results are listed in
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TABLE 2. Conjugated-circuit counts and n-resonance energy for
linear and zigzag phenylene polymers

(b)

linear zigzag
4-cycle c =0.14645 ¢ =0.27639
6-cycle s =0.35355 5 =10.27639
8-cycle 0 =0.14645 0=0.17082
10-cycle 1= 0.06066 1=0.10557
12-cycle d =0.14645 d=10.10557
14-cycle f = 0.06066 f =0.06525
#4 = #12 #4 = #6
: #y=2%g #10=#12
Relations #lo=24#14 gt =03+ V5)2
#al#p=1+\2 e/t =5-1
#ely=1+2 #1af#a=V5-1
RE/cell 4CQ1 + SOQZ + 4dQ3 4CQ1 + BOQZ + 4dQ3
expressions +45R; + 4tR, + 8fR3 +4sR) + 41Ry + 8fR;
RE/e (eV) 0.0473 -0.0073
4.5 6.0
(@)
4.0 7 50
3.5 #alt 1o
#o/#s
3.0
PXoi
2.0 T T T T T
1 2 8 4 5 7 8 9

FIGURE 7 The ratios of various conjugated n-circuits in [N]phenylenes:

(a). linear; (b). zigzag.




- 221 -

TABLE 3 Conjugated-circuit counts and resonance energy for azulenic
polymers

Polymers 8-cycle | 10-cycle | 12-cycle | RE expressions | RE/e

| - | 07=0.27639{ t;=0.00000 | d,=0.27639 | 0,0,+2t;Ry+d; Q3 [ -0.0108

‘m 0,=0.00000 | t;=0.00000 | 0,=0.00000| 0,@,+4t;Ry+d; Q3 | 0.0000

015084 | T -13084 1=0I504 (B 20,)0,

; /‘M fP =0. =0. 2
. * [oy=0.1028 15=0.10928 | dy=0.10928 | +(2ty+dt#tRy | (0o
A

1,=0.07917 | d,=0.07917 | +(3d;+2d,+2d3)0,
fi_ = 007917 (l4-cycle) |+2f1Ry

‘; S 1 ') | 0y=0.13816} 1,=0.13816 | d,=0.13816 | 0,0,+2t;R5+d; 05 | 0.0031

mh et @+20)R; | 0.0150
— G ,=0.07101

; ; UmaIo e @u+2)R, | 0.0154
; ; 1,=0.07320
0,=0.15084  1,=0.15084 | d,=0.15084 (°g+i'f-‘)%§
0,=0.10928| 1,0.10928 | d,=0.10028 | SR o0 o
+d+245)0,
f; = 007917 (l4cycle) s
t,=0.13816 ayR, 0.0170
R 2u+25)R; | 00170
1,=0.27639
(,=0.13819 2R, 0.0170
04=0.00000/ £,=0.21132 | d,=0.28868
! . X %Ry 0180
f; = 0.15470  (l4-cycle) | +d103+1Ry
0,=0.00000] 1,;=0.15084 | d,=0.15084|  0,0,+d,0,
1,=0.10928 +24+4)Ry | 0.0224

f; = 0.07917  (14-cycle) +2f1Rq
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order of increasing resonance stabilities. As has been known for finite
molecules, both fused pairs of pentagons and fused pairs of heptagons have
a destablizing effect, presumably because these fused pairs of rings lead to
cycles of size 4n (n = 2 and 3) around the peripheries of these pairs.
Generally it seems that fusing of a pentagon and heptagon together (with
the consequent periphery of size 4n+2 = 10) gives a stablizing effect. The
last two polymers in our TABLE 3 have much higher stabilities, even though
both fused pentagon pairs and fused heptagon pairs occur. Evidently the
Kekulé structures as arise on these polymer structures only infrequently
lead to conjugation around such unfavorable pairs, thence these two

polymers are expected to be somewhat novel organic polymers.
5. CONCLUSION

In conclusion, an efficient automated computational scheme for the
conjugated-circuit treatment of resonance in regular (high) polymers has
been described here, and has now been applied to a range of polymer
structures to yield numerical results, both old (thereby checking the
programming) and new. Some (anticipated) results concerning local
aromatic character have been verified, and a couple novel polymer

structures have been identified.

Acknowledgement is made for support of this research to the Welch
Foundation of Houston, Texas and to the donors of The Petroleum

Research Fund, administered by the American Chemical Society.



- 223 -

REFERENCES

U E. Clar, The Aromatic Sextet, Wiley, London, 1972.

2 D.J. Klein, J. Chem. Edu., 69 (1992) 691.

3 (a) W.C. Herndon, J. Am. Chem. Soc., 95 (1973) 2404.

(b) W.C. Herndon, Thermochimica Acta, 8 (1974) 225.
(¢) W.C. Herndon, Isr. J. Chem., 20 (1980) 270.
4 (a) M. Randi¢, Chem. Phys. Lett., 38 (1976) 68.
(b) M. Randi¢, J. Am. Chem. Soc., 99 (1977) 444,
(c) M. Randi¢, Tetrahedron, 33 (1977) 1905.

3 For reviews, see, (a) N. Trinajstié, S. Nikolié and D.I. Klein, J. Mol.
Struct.(Theochem), 229 (1991) 63, and references therein.

(b) S. Nikoli¢, N. Trinajstié and D.J. Klein, Computer Chem., 14
(1990) 313.

6 W.A. Seitz and T.G. Schmalz, pages 525-551 in Valence-Bond Theory
and Chemical Structure, D.J. Klein and N. Trinajsti¢,Eds., Elsevier,
Amsterdam,1990.

7 D.I. Klein and N. Trinajsti¢, Pure & Appl. Chem., 61 (1989) 210.

8 D.J. Klein and X. Liu, J. Comput. Chem., 12 (1991) 1261.

9 (a) P.W. Kasteleyn, J. Math. Phys., 4 (1963) 287.

(b) P.W. Kasteleyn, chap. 2 in Graph Theory & Theoretical Physics,
F. Harary, Ed., Academic Press, New York, 1967.

W H. Zhu, A.T. Balaban, D.J. Klein, and T.P. Zivkovi¢, J. Chem. Phys.,
(submitted).

11 See, e.g. section 3.8 of F.B. Hildebrand, Introduction to Numerical
Analysis, McGraw-Hill, New York, 1974.

12 M. Randi¢, S. Nikoli¢, N. Trinajsti¢, pages 429-447 in Graph Theory



- 224 -
and Topology in Chemistry, R.B. King and D.H. Rouvray, Eds.,

Elsevier, Amsterdam, 1987.

13 D. Cvetkovié, 1. Gutman, and N. Trinajstié,J. Chem. Phys., 61 (1974)
2700.

14 (a) J.V. Knop, W.R. Moller, K. Szymanski, and N. Trinajstié, Computer
Generation of Certain Classes of Molecules, SKTH/Kemija u Industriji,
Zagreb, 1985.

(b) J.R. Dias, Handbook of Polycyclic Hydrocarbons: Part A, Elsevier,
Amsterdam,1988.

15 H. Zhu and Y. Jiang, Chem. Phys. Lett., 193 (1992) 446,

16 (a) G.E. Hite, A. Metropoulos, D.J. Klein, and T.G. Schmalz,Theor.
Chim. Acta, 69 (1986) 369.

(b) W.A. Seitz, G.E. Hite, T.G. Schmalz, and D.J. Klein, pages 458-465
in Graph Theory and Topology in Chemistry, R.B. King and D.H.
Rouvray, Eds., Elsevier, Amsterdam,1987.

(c) D.J. Klein, Rep. Mol. Theory, 1 (1990) 91.

17 W, Barton and D.J. Rowe, Tetrahedron Lett., 24 (1983) 299.

18 (a) R.H. Schmidt-Radde and K.P.C. Vollhardt, J. Am. Chem. Soc., 114
(1992) 9713.

(b) K.P.C. Vollhardt, Pure & Appl. Chem., 65 (1993) 153.

19 N. Trinajstié¢, T.G. Schmalz, T.P. Zivkovié, S. Nikoli¢ G.E. Hite, D.J.

Klein and W.A. Seitz, New J. Chem., 15 (1991) 27.



