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Abstract

The decomposition of the Wiener number inte contributions coming from
the edges of the respective molecular graph is a problem that was scl-
ved already in 1947 by Wiener himself, but only for acyclic systems.
We now report an edge-decomposition formula valid for arbitrary con-

nected graphs, and examine its various special cases.

Introduction

Since 1947, when the topological index W was invented by H. Wiener [1],
this quantity became one of the most frequently used descriptors of branch-
ing of the carbon-atom skeleton of organic molecules; W is nowadays common-
ly known under the name Wiener number or Wiener index. The Wiener number
was the topic of a large number of studies, and a plethora of published pa-
pers exists on this subject (see [2-7] for review and further references).
In this work we are concerned with the edge-decomposition of W, namely with

the quantities H= that satisfy the formula

W= W (1)
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In Eq. (1) and elsewhere } denotes summation over all edges of the respect-
ive molecular graph. :
The Wiener number is defined as follows [5]. Let the vertices of the
molecular graph G be labeled by 1,2,...,n. Let u and v be two vertices of G
and let d(u,v) .be the distance [8] between them. Then the Wiener number is

equal to the sum of the distances between all pairs of vertices of the

respective graph, i.e.:

W =W({G) = d(u,v) . (2)

usv

Already in the first published work [1] on the Wiener number it was
observed that in the case of acyclic molecular graphs, the sum of all dis-
tances in G can be obtained by counting the paths that go through an edge
e, and then summing these counts over all edges of G. This result is an
immediate consequence of the following two elementary facts: (a) d(u,v) is
equal to the number of edges lying on a path of minimal length, connecting
u and v; (b) in acyclic graphs the path connecting any two vertices u and v
is unique, and is thus of minimal length. Now, in an acyclic graph G, the
number of paths that include a certain edge e is equal to nl(e) X nzlel )
where nl(e] and nz(e) denote the number of vertices of G, lying on the left
and right side, respectively, of the edge e. This is because every path
going through e starts on one side of e and ends on the other side of e.

The above reasoning results in Wiener’'s edge-decomposition formula [1}:

W= nl(e] x nz{e) i.e. H'e = ni(e) x nz[e) (3)

e

which holds for acyclic, but not for cyclic molecular graphs. In this paper

we offer a generalization of (3), applicable to all graphs.
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A general edge-decomposition formula

Consider a connected graph G, let u and v be two distinct vertices of
G, and let d{u,v) denote their distance in G. The total number of paths be-
tween u and v, that are of length d(u,v), is denoted by LI The number of
such paths, that contain the edge e is denoted by uuv(e). Then we have the

following

Theorem 1. For every connected graph G,

W=WG) = X Z [ (e)/m ] (4)
e u<y
o) e ®
u<sv

Proof. Consider the sym } nw(e). Because nw(e) counts the shortest paths

e
between u and v, that include e, in } nuv(e) every shortest path between u
e
and v is counted as many times as there are edges in a shortest path

between u and v, i.e., d(u,v) times. In other words:

¥ rrw(e) =w % d(u,v) . (6)

From (6) we obtain } ﬂw(e)/uw = d(u,v), which substituted back into (2)

W= 2 Z [nuv(e)/nuv} x (7)
u<v e

Exchanging the two summations in (7) we readily arrive at (4).

yields

The result stated here as Theorem 1 was first reported by one of the
present authors in [9], but was deduced using a completely different way of

reasoning.
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As an example consider the naphthalene graph and the edge e = e(1,2),
connecting its vertices 1 and 2. According to Eq. (S), in order to find the

contribution W of the edge e to the Wienmer number, we have to compute
e

(1,2)
nuv(e]/n for all the vertex pairs of the naphthalene graph. There are
uv

n(n~1)/2 such pairs, with n being equal to 10.

Examine first the vertex pair 3, 8. Its distance is d(3,8) = 5. There
exlst three dlstlnct paths of length 5, connecting the vertices 3 and 8.
These are: (3,2,1,10,9,8}, {3,2,1,6,7,8} and {(3,4,5,6,7,8}. The first two

of them contain the edge e = e(1,2), whereas the third does not. Therefore,

naa =3, naa(e) = 2. Consequently, the contribution of the vertex pair 3, 8
to the value of W is equal to 2/3.
el(1,2)
For the vertex pair 7, 10 the contribution to W is zero, because

e(1,2)
neither of the two shortest paths {7,6,1,10} and {7,8,9,10} includes the

edge e(1,2).
Repeating such an analysis for all 45 vertex pairs of the naphthalene

graph we arrive at the following results:



u v LI r:uv(e) u v non (e) u v LIV v(e)
1 2 1 1 2 9 1 1 S 6 1 o]
1 3 1 1 210 1 1 s 7 1 0
1 4 2 1 3 4 1 0 5 8 1 0
1 5 1 0 3 5 1 0 $ 9 2 0
1 6 1 0 3 6 2 1 5 10 1 0
1 7 1 0 3 7 2 1 6 7 1 0
1 8 2 o] 3 8 3 73 6 8 1 0
1 9 1 0 3 9 1 1 6 9 2 0
110 1 0 310 1 1 6 10 1 0
2 3 1 o] 4 5 1 0 7 8 1 0
2 4 1 0 4 6 1 0 7 9 1 0
2 5 2 1 4 7 1 0 7 10 2 0
2 6 1 1 4 8 1 0 8 9 1 o
2 7 1 | 4 9 3 i1 8 10 1 0
2 8 2 2 4 10 2 1 9 10 1 0
By applying Eq. (5) we now readily establish that weu,z) = 12 % . Observe

that of the 45 vertex pairs in the naphthalene graph, only 16 have non-zero
contributions to W ”
e(1,2)

The above example illustrates an interesting feature of the edge-de-
composition of the Wiener number: whereas W is necessarily an integer, its
edge-decomposition may lead to non-integer Ne-values. &

A similar calculation for the edges e(2,3), e(3,4) and e(1,6) yields:
2

, W =6 i and W = 12 - . This, of course, is

=8
e(3,4) e(1,6) 3

1
ue(z.:s) 2
consistent with the fact that for the naphthalene graph, W = 109. Really,

4% "cn,z) s wuz.:n B we(:!.tl) * we(l.s) =109 -

We see that the edges e(1,2), e(2,3), e(3,4) and e(1,6) contribute to
Wby 11.5% , 7.8% , 5.6% and 11.6% , respectively. Observe that the more
branched edges e(1,2) and e(1,6) have a significantly greater contribution

to W than the less branched edges e{2,3) and e(3,4).
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The above example reveals that the edge-decomposition of the Wiener
number via a direct application of Theorem 1 is a quite cumbersome and an
error prone task. In what follows we demonstrate that in a number of chemi-

cally relevant cases the form of Eq. (5) can be significantly simplified.

Some corollaries of Theorem 1

The most noteworthy simplification of Theorem 1 is obtained if the edge
e is a bridge. (Recall that an edge e of a connected graph G is said to be
a bridge if G-e is disconnected.)

Let G be a connected graph on n vertices and let e be one of its
bridges. Denote by Gl and Gz the two components of G-e and let them possess
nl(E) and nz(e) vertices, respectively, nI(e) * na(e) = n . Consider the
quantities L. and nw(e) that occur in Eq. (5).

If both vertices u and v of G belong to either G1 or G2 , then the
shortest paths between u and v lie either completely in Gl or completely in
Gz and, consequently, do not include e. Therefore, for such vertex pairs,
nwle) = 0 and their contribution to He is nil. If, on the other hand, u
belongs to G:l and v belongs to G2 , then all shortest paths between u and v
must go through e. Therefore, for such vertex pairs, uuvlej = nuv . Each
such pair contributes to Ue by nuv(e)/nw = AL

We thus have demonstrated that if e is a bridge, then 'He is equal to
the number of vertex pairs u, v, such that u belongs to G1 and v belongs to

Gz . The number of such vertex pairs is evidently nlte) X nz(e) p
Corollary 1.1. If e is a bridge, then H'c = nx(e) x nz(e) =
Acyclic graphs have the property that all their edges are bridges.

Corollary 1.2. If G is acyclic, then relation 'Je = nl(e) x nzle] is obeyed

by all edges of G, i.e. Eq. (3) holds.
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Thus (and of course), Wiener’s edge-decomposition formula occurs to be a
special case of our Theorem 1.
If the edge e is not a bridge, then it necessarily belongs to a circuilt
of the graph G. The simplest such case is when the circuit Z to which e
belongs is unique. The general structure of the respective graph G is given

as follows:

In the above diagram p is the size of the circuit Z to which the edge e
belengs. If Z is an even-membered circuit, then p = 2k. If Z is an odd-mem-
bered circuit, then p = 2k+1. Without loss of generality we may assume that
the edge e lies between the vertices which, in the above diagram, are

labeled by k and k+1
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The structure of the subgraphs G} 3 G2 e Gp is arbitrary; they may
be cyclic or acyclic, and need not be isomorphic. The number of vertices of
G‘ is denoted by no, b= 02 Ps

The following results can be deduced from Theorem 1 by elementary, but

somewhat lengthy reasoning. We, therefore, state them without proof.

Corollary 1.3. Let G be the above described graph and e its above described
edge. If the size p of the circuit Z to which e belongs is
odd, p=2k +1, k =1,2,..., then

1
¥ nn ’ (8)

k
=L Ean,

e
1=1 }

Corollary 1.4. Let G be the above described graph and e its above described
edge. If the size p of the circuit Z to which e belongs is
even, p = 2k, k = 2,3,..., then

k
W= T

e
1

13
);l nono- (9)

-

i
; I-ll nluj -

1 §=1 Iy

As an illustration of the above results consider the molecular graph
of 1-methyl, 3,3-diethyl, 4-isopropylcyclopentane. This graph has a unique
S5-membered circuit (i.e. p = 5 and k = 2), and therefore Corcllary 1.3 is

applicable. Further, nl = 2, n2 = d; n3 =5, n‘ =4, ns = 1.
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Formula (8) is directly applicable to the edge e(2,3):
W =n xn +n xn +n xn =2x5+1x5+1x4=19
e(2,3) 1 3 2 3 2 4

In a fully analogous manner we can compute the contributions of the remain-

ing four edges of the S5-membered circuit

W =n_ xn +n xn +n xn =1x1+2x1+2x5=13
e(1,2) 5 2 1 2 1 3

W =n_xn +n_xn +n xn =1x4+5x4+5x1-=29
e(3,4) 2 4 3 4 3 5

W =n_xn +n xn +n xn =5x1+4x1+4x2=17
e(4,5) 3 s 4 s 4 1

W =N XM, TN XN +0. Xxn.=4%2+1x2+1 x1 =11
e(5,1) 4 i 5 1 5 2

From Corollaries 1.3 and 1.4 we see that Hn depends only on the number
of vertices of the subgraphs Gl " G2 soes 1@ and is independent of any
]

other structural detail of G. A noteworthy special case of Corollary 1.3 is

Corollary 1.5. Let G and e be the graph and its edge, considered in Corol-
lary 1.3. Let Z be a triangle, i.e. k = 1. Then He =n xn.
The above result should be compared with Corollary 1.1.
An interesting expression is obtained for the sum of the edge-contri-
butions of all edges of G, belonging to the circuit Z.
Corollary 1.6. Let G be the graph considered in Corollaries 1.3 and 1.4

Let E; symbolize summation over all edges of G that belong
to the circuit Z. Then for both odd and even p,

] p-1 p s
LW =75 [ di,j)n n,

1=1 j=1+1
In the special case when n1 = na =...= np (which does not require that
the subgraphs G1 . G2 5 F Gv be isomorphic), Egs. (8) and (9) are much

simplified:

Corollary 1.7. Let G and e be the graph and its edge, considered in Corol-
laries 1.3 and 1.4. If all the subgraphs G1 & G2 s Gp
have the same number of vertices (= n/p ), then wa does not

depend on the position of the edge e in the circuit 2 and
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(n®/8)(1 - 1/p%)  if p is odd
W = g (10)

n/8 if p is even

Corollary 1.8. Let Z denote the p-vertex circuit. Then under the condi-
tions specified in Corollary 1.7, Y W = (n/p)° W(2)
e e

We note in passing that if G coincides with Z, i.e., if in the formula
(10), p = n, then the result of Corollary 1.7 reduces to the well known
expression [10] for the Wiener number of the p-vertex circuit Z :

2 2 . <
(p” - 1)/8 p(p® - 1)/8 if p is odd
W = and W(Z) =
p2/8 pG/S if p is even

In this case, of course, He = W/p .

Applications

The theory of the Wiener number was originally designed for, and ap-
plied to saturated hydrocarbens. For such molecules it is a plausible
assumption that all carbon-carbon bonds have equal effects on various
physico-chemical properties that are (expected to be) described by means of
the Wiener number. In later developments, the theory of the Wiener number
was extended to other types of organic systems (unsaturated and aromatic
hydrocarbons, etc). For these compounds it is not clear why different types
of carbon-carbon bonds should be equally treated and why the effects of
such different bonds should be incorporated with equal weights in the
resulting value of the Wiener index.

Theorem 1 offers a solution for this problem.

Using Theorem 1 we can identify the effect of any particular chemical

bond on the Wiener index of an organic molecule. We can collect the effects
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of bonds of the same kind and consider them separately. Application of this
idea to the study of the walter/n-cctanol partition coefficlent was already
reported [9,11].

In the formulation of the Wiener index all carbon-carbon bonds are
represented in the molecular graph by edges of the same type. Each edge-
-contribution is then simply added, so as to obtain the regular Wiener num-
ber, cf. Eq. (1). If we wish to distinguish between the effects of various
bond types, then Eq. (1) provides us with the following straightforward

generalization

where we is a pertinently chosen weight of the edge e. (A typical weighting

would be by choosing W o= 1 for single carbon-carbon bonds, ue = w and

LA for the double and triple carbon-carbon bonds, respectively, and

It

we war for aromatic bonds; the parameters w_, w_ & war could be adjust-

ed by optimizing the correlation between WW and scome pre-selected physico-
-chemical property of the respective class of compounds.
The above proposed quantity WW could be named the weighted Wiener

index. Work on the applications of the weighted Wiener index is under way.

Acknowledgement. One of the authors (I.G.) thanks the Mathematical Institu-

te in Belgrade for financial support of this research.



[1]
[2]

[31]

[4]

[5]

[el]

[71

8]

[9]

[10]

(11]

- 144 -

References

H.Wiener, J.Am.Chem.Soc. 69, 17 (1947).

D.H.Rouvray, in: R.B.King (Ed.), Chemical Applications of Topology
and Graph Theory, Elsevier, Amsterdam 1983, p.159.

D.H.Rouvray, in: N.Trinajstic (Ed.), Application of Mathematical
Concepls to Chemistry, Ellis Herwood, Chichester 1985, p.295.
D.H.Rouvray, Sci.Amer. 255 (9), 40 (1986).

I.Gutman and O.E.Polansky, Mathematical Concepts in Organic Chemislry,
Springer-Verlag, Berlin 1986.

Z.Mihalic and N.Trinajstic¢, J.Chem. Educ. 69, 701 (1992).

1.Gutman, S.-L.Lee, Y.-N.Yeh, Y.-L.Luo, Indian J.Chem. 324, 651
(1993}.

F.Buckley and F.Harary, Distance in Graphs, Addison-Wesley, Redwood
1990.

I.Lukovits, Quant.Struct.Act.Relat. 9, 227 (1990).

R.C.Entringer, D.E. Jackson and D.A.Snyder, Czech.Math.J. 26, 283
(1976).

I.Lukovits, Int.J.Quantum Chem. Quantum Biol.Symp. 19, 217 (1992}.



