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Abstract

It is shown that the degree of freedom of a Kekulé structure A of a cata-condensed benzen-
oid hydrocarbon I is equal to the number of maximum disjoint hexagons containing three
double bonds. From this property, a recursive relation for the degree of freedom of H is
derived. By using the powerful generating function method, closed form formulae for the
dle)gr_ee (c)if freedom of three infinite classes of cata-condensed benzenoid hydrocarbons are
obtained.

Key words: Kekulé structure, degree of freedom, benzenoid, cata-condensed, generating
function.

1 Introduction

A new graph invariant, the “degree of freedom” of a graph was recently defined and studied
[1-3]. This concept captures the intuitive idea that knowledge of how many elements (of
a type to be defined) must be fixed in a graph for uniquely determining the structure
(again to be defined) of the graph tells much about this graph. The degree of freedom of
a Kekulé structure K of a graph G is the minimal number of double bonds of K which
belong simultaneously to no other Kekulé structure of G. The degree of freedom of G,
denoted by f((), is the sum of the degrees of freedom over all Kekulé structures of (7. The
potential usage of the degree of freedom of a graph in chemistry is also discussed in the
cited papers. The degree of freedom of a Kekulé structure is the same as the forcing number
of a perfect matching proposed by Harary et al. [3]. The concept of degree of freedom or
forcing number can be naturally extended to different structures in chemical graph theory
or in general graph theory. For example, the degree of freedom or the forcing number of a
Clar formula €' ([4]; [5], page 96) can be defined as the minimum number of benzenes in
C which belong simultaneously to no other Clar formula. The degree of freedom or forcing
number of a spanning tree T of G can be defined as the minimum number of edges of 7'
which belong simultaneously to no other spanning tree of (7, etc.

A transfer matrix method [6] to compute the degree of frecdom of a zigzag chain was

described in [2]. To compute the degree of freedom of a graph in gencral appears to be
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hard, except if one uses an enumeration method, which may be quite time consuming. In
this paper, we confine our discussion to cata-condensed benzenoid systems. We give iu
Section 3 a recursive method to compute the degree of freedom for graphs in this class. In
Section 4, we apply this recursion to several subclasses of cata-condensed benzenoid systems
and derive by the powerful generating function method explicit formulae for the degrees of
freedom of all graphs in these subclasses. In particular, we give an explicit formula for the
degree of freedom of a zigzag chain, also studied in [2].

2 Computing the degree of freedom of a Kekulé structure

We first specify some definitions and notation. A Kekulé structure (or perfect matching)
of a graph G is a set of independent edges which cover all vertices of G. A dominating set
of a Kekulé structure (or perfect matching) M of G is a set of bonds of M which belong
simultaneously to no other Kekulé structure of G. Thus the degree of freedom of M is equal
to the cardinality of a minimum dominating set of M.

A benzenoid system is a planar graph with no cut vertices and in which each interior face -
is a regular hexagon. The skeleton of a benzenoid hydrocarbon B is usually represented by
a benzenoid system H [7]. The carbon atoms of B correspond to the vertices of H.

A benzenoid system is cata-condensed if it has no interior vertices.

Let H be a benzenoid system and M a Kekulé structure. A hexagon of H is M-resonant
if it contains three double bonds of M. An M-resonant set of M is a set of disjoint M-
resonant hexagons. A mazrimum resonant sef of M is an M-resonant set of M which has
the maximum cardinality.

All benzenoid systems considered below are assumed to be cata-condensed unless other-
wise specified. In the following lemma and theorem we study the relationship between the
degree of freedom and maximum resonant sets.

Lemma 1 Let M be a Kekulé structure of H. If s is an M-resonant hezagon of H which has
at most one neighboring M-resonani hexagon, then s belongs to a mazimum resonant set of
M.

Proof. Let S be a maximum resonant set of M. If s does not belong to S, then the
neighboring M-resonant hexagon s’ of s belongs to §. Thus § — {s'} + {5} is a maximum
resonant set of M which contains s. a

Theorem 1 Let H be a cata-condensed benzenoid system and M be a Kekulé structure.
The degree of freedoin of M is equal to the cardinality of @ maximum resonant set of M.

Proof. Let D be a minimum dominating set and § be a maximum resonant set of M.
Note that each member of S contains at least one double bond in D and all hexagons in
S are disjoint. Hence |D| > |S| (where | #| is the cardinality of *). We next show that
D] < ISl.

Let H' be the subgraph consisting of all M-resonant hexagons of #. Then H' may lave
several connected components and each of them is a cata-condensed henzenoid system. So



there is an M -resonant hexagon s whiclh has at most one neighboring M-resonant hexagon.
By Lemma 1, we can assume that s belongs to 5. If s is an isolated hexagon of ff’, select
a double bond ¢ in & in an arbitrary way. Otherwise select the common double bond of s
and its neighboring hexagon in H'. Replace H' by the subgraph consisting of M-resonunt
hexagons of /1 which do not contain ¢ and also denote it by H’. Note that all hexagons of
H' are disjoint from s, and that S — s is contained in H’. Repeat the above procedure untit
H' becomes empty. Let D’ be the set of double bonds selected. Clearly, |D| = |§]. Also
each M-resonant hexagon contains a double bond of I'. We assert that D’ is a dominating
set. Otherwise, D' will be contained in another Kekulé structure M’. Then consider the
symmetric difference @ of M’ and M (ie. Lhe set of double bonds belonging to M or M’
but not to both). Since each vertex of ¢ is incident with two bonds, there is a circuit €
contained in (. Let ('{H) be the cata-condensed benzenoid system which has €' as its
boundary. Then M N C(H) is a Kekulé structure of C{H). By Lemma 3 of 8], C'(H)
has a hexagon which contains three double bonds of M N C(H} and this hexagon does not
contains any double bond of D’. This is a contradiction. Therefore [D’| = |§| > [D|. The
proof is completed. o

The above proof actually provides a method to compute a maximum resonant set of a
given Kekulé structure M as well as its degree of freedom. We write down this procedure
formally as follows:

FREEDOM: Select an Af-resonant hexagon of M which has at most one neighboring M-resonant
hexagon; delete this hexagon together with the bonds incident to it from H; repeat the foregoing

steps until an emply graph is obtained. The selected hexagons form a maximum resonant set of M

3 The degree of freedom of cata-condensed benzenoid hy-
drocarbons

Let H be a cata-condensed benzenoid system and s a hexagon which has only one neighbor-
ing hexagon. Let H(s) be the longest hexagon chain of H with s as one of its end hexagons
such that all hexagons in H{s) are in a row. Let s’ be the other end hexagon of H(s). Let If,
be the graph consisting of the hexagons of H not in H(s). Let H s be the graph obtained
from H, by deleting the bonds of s’ together with their end vertices, consecutively deleting
the pendant bonds with their vertices and finally deleting the bonds which do not belong to
any remaining hexagon but not their vertices. Note that each connected component of i,
or H + s is a cata-condensed benzenoid system. Also H, and H s may be empty. Figure 1
gives an illustration of H, and H + s. Let r be the number of hexagons of (s). Let k()
denote the number of Kekulé structures of a graph . When ( is empty, by convention,
let f(G) =0 and k{7) = 1. Then we have the following result:
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Figure 1: The illustration of H, H, and Hxs.
Theorem 2 Lel H be a cata-condensed benzenoid system and s be a heragon having only
one neighboring hexagon. Then

k(H)
fim)

rh(H,) + k(H + s),
k(H)+ f(H,) + f(H +3).

Proof. Without loss of generality, let H be embedded in the plane in such a way that H(s)
is horizontal (i.e. the centers of all hexagons of H(s) are on the same horizontal line). Let
€0, €1,-.-, €& be the vertical bonds of H(s) such that ¢y and e, are the leftmost and the
rightmost of them respectively. We partition the Kekulé structures of H into r + 1 sets
Ag, A1, ..., A, such that all Kekulé structures in A; contains e;. First we show this is indeed
a partition of the Kekulé structures of H. Note that H is a bipartite graph. We color the
vertices of H in black and white such that no two adjacent vertices have the same color. Let
Hy and H; be the two connected subgraphs obtained from H by deleting e, ..., e, but not
their end vertices. Through a simple calculation, we have that the difference between the
number of white vertices and the number of black vertices of H; (j = 1,2)is 1 or -1. This
means any Kekulé structure of H contains one and only one of eg, ey, ..., ¢, and therefore
Ag, A1, .., A, are a partition of all Kekulé structures of H.

Next we calculate the sum of the degrees of freedom of Kekulé structures in each A;.
We do this for Ag and A4,. The calculation for the otherA; can be done in a similar way.
Let M be a Kekulé structure in Ag. Then s is resonant in M. Note that all double bonds
of M which belong to H(s) are uniquely determined by ep. Thus each Kekulé structure of
H, can be uniquely extended to a Kekulé structure in Ag and the restriction ol each Kekulé
structure in Ag to H, is a Kekulé structure of H,. Thus |Ag] = k(H,). By Lemma 1, s
belongs to a maximum resonant set S of M. One can check easily that S — s is contained in
H, which is also a maximum resonant set of M N ;. Recall that the degree of freedom of a
Kekulé structure M is equal to the cardinality of a maximum resonant set of M. Thus the
sum of the degrees of {reedom of Kekulé structures in Ag is |Ag| + f( He) = k{Hs) + f(Hy).
Similarly, we can show that the sum of the degrees of freedom of Kekulé structures in A,
is k(H) + f(H,) for (i = 1,2....,7— 1). Note that the number of black vertices is equal to
the number of white vertices in each connected component of H,. All Kekunlé structures in
A, have s' as a resonant hexagon (where s’ is the end hexagon of H{(s) containing ). Also

&' is not adjacent to any other resonant hexagon. Thus s’ belongs to a maximum resonant



Fignre 2: Tlustration of Z, and Z(m,n).

set of each Kekulé structure in A,. We can show that there is no other resonant hexagon
of a Keknlé structure in A, which is contained in H(s). Each Kekulé structure of I » s
can be extended to a Kekulé structure in A, in a unique way and the restriction of each
Kekulé structure in A, to H s is a Kekulé structure of H +s. Thus the sum of the degrees
of freedom of Kekulé structures in A, is equal to |A,| + f(H *s) = k(H = s) + f(Il »s).
Therefore f(H) = rk(H,) + k(H +s)+rf(H)+ f(H +5) = z |Ail +rf(H)+ J(H +s) =

i=0

k(H)+ rf(Hs)+ f(H * s). The proof is completed. a

4 Degree of freedom of cata-condensed benzenoid systems
in three special classes

In this section, we derive an explicit formula for the degree of freedom of benzenoid systems
contained in three special subclasses which are described below.

A zigzag chain Z, is a cata-condensed benzenoid system with n hexagons as shown in
Figure 2. Let f, and k,, denote the degree of freedom and the number of Kekulé structures
of Z, respectively. More generally, a (m,n) — zigzag chain Z(m,n) is a cata-condensed
benzenoid system with mn hexagons as shown also in Figure 2. Clearly a 7, is a (1.1)-
zigzag chain. Let fn(n)and E,(n) denote the degree of freedom and the number of Kekulé
structures of Z(m,n) respectively.

A Rfn)is a cata-condensed benzenoid system with 62 hexagons as shown in Figure 3.
Let 7, and g, denote the degree of freedom and the number of Kekulé structures of R{n)
respectively.

We first derive a recursive relation for f,, by Theorem 2 and then calculate the generating
function of f,, and give a formula for [, in terms of k,. Finally we present an explicit
formula for f,. We give details about our derivation in the next subsection. In the other
two subsections, we only give the formulae obtained. We first mention a result of [2] which
is used in the derivation of the explicit formulas for the degree of freedom of Z{m.n) and
R(n): let @ = AU B and AN B = 0 (where A and B are two graphs): then f((/) =



Figure 3: Illustration of R(n).

k(A)f(B)+ k(B)f(A).
4.1 The degree of freedom of 7,

o
The generating function of a sequence of integers go, g1, ...gn, ... is defined as g(z) = Z giz's
=0

One of the most frequent uses of generating functions is the solution of recursive relations.
The question is as follows: given a sequence go, g1, ..., gn, ... Which satisfies a given recur-
rence, to find a closed form for g,. Use of the generating function method for soiving this
problem consists of the following four steps (see also [9]):

1. Write down a single equation that expresses g, in terms of other elements of the
sequence.

2. Multiple both sides of the equation by 2™ and sum over all z > ). The left side of the
sum gives g{z) and the right side gives (after manipulations) an expression involving g(z).

3. Solving the resulting equation, a closed form of g(z) is obtained.

4. Expand g(z) into a power series. Then the coefficient of z" gives a closed form
expression of g,.

We demonstrate the above for f, and k,,. Let k(z) and f(x) be the generating functions
of k, and f, respectively. Note that kg = 1,k =2, fo =0,/ =2, and f, = 3.

By Theorem 2, we have

Corollary 1

kn = kp-1 + kaey formn >2,
fo =kat2cat fay  forn23.



By the above coroliary, we have
k(z) = Y kat=142r+Y k'
>0 i>2
= 1+20 4 (ko + kica)e’
i>?
= 142z4+ erg:r" + JZZk;:r‘
i>1 >0
= 14+ zk(z)+ wzk(z).
|+
k(z) = Lok

1—z—2%

Similarly, we can obtain an explicit formula for f(z) as follows:

J(z) = Zj;:ri =2 4 3z° +Ef,‘ri

>0 iz
= 2z 4322+ Z it + Z(?I,’-) + fim3)z!
>3 i3

= —14k(z)+(2e2 + 2°) f(x),
1+z—(1—-z-x?)

=) = g

]

By further simplifications, we obtain
_l4z—(1-z-2%) _ 1 1 T

T-z—aP(i4z) (l-z-=2) (I4+z) (-xz-22)

In order to derive a formula for f,, we need the generating functions for the following

f(=)

two sequences: one is the Fibonacel numbers which are defined as Fy, = 0,F) = 1, F) =
ko, F3 = ky, Fy = kg, .y Fn = ky—2, ... and the other one is defined as by = 1,b; = ko, bz =
kiyoosba = kn_1,.... Let their generating functions be F{z) and b(z) respectively. In the

same way as when deriving k(z), we obtain F(z) = la‘% and b(z) = T
= S

Tet ¢ = 4 +2\/3 and é = ; MQ\/g. Then
1—z—-2%= (1 - ¢z)(1 - da),
and
YW
(I—z—22)2 = "25 1-¢2 1-¢o
_ 1. 6+2v5 8 6—2/3
200(1=¢2)® " (1-gx)(1 — g2} (1—6x)?
1
= —((6+2V3) Z[" + D)g"e™ + SE bor™ 4+
20
20 n20
(6-2v5) Y (n+ 1)é"").
n>0
Also ]
x ' ny,om
T e - gt

>l
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Thus we have
1 . - 5 2 : n
fu = g5(6(n+ D)(S" + ") + 2VB(n + 1)(6" — 6") + 8bn) = (Fu + (= 1)")-
Recalling that ¢ + ¢ = 1, we have that " + &" is equal to the nt" coefficient of

Lo, 1 _2-(e4dp
T-9r 1-¢z  (1-9z)1—dx)
2-z
l-gz-2?

22 bz — ZF,,:“.

n>0 n>0

Therefore ¢™ + d;" =2b,— F,..
Similarly, " — ¢" is equal to the n*h coefficient of

1 _ 1 \/5:
1-¢2 1-¢o (1= ¢z)(1— bz)

Ve
T-z-2?
\/gz Fax™.

n>0

Thus

fa

%(G(n +1)(2bp — Fu) + 10(n + 1)F, + 8b,) = (Fy + (—1)")

= 55((2n4 1)+ Oy +4n+ Dbaz) = (haca + (-1)7)
for n > 2.

One more step, using the relation k, = kn—1 + ky—2, leads to

B L;_‘*kn & 2": S B
Summarizing all the above, we have
Theorem 3 . ikl
fo= Tkt Bk (-1 22
! 5

and

kn = ‘/ng"” A

m

Proof. The second formula comes from the fact that k,, is the (n+2)t* Fibonacci number

(see also [7], page 41).
In TABLE 1, we present values of &, and f, for n up to 21.

a
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n k| fuln ke fu
Q 1 011 233 1220
1 2 20 e 377 2140
2 3 3113 610 3738
3 5 9|14 987 6487
4 8| 16| 15| 1597 11213
5| 13| 34|16 | 2584 | 19296
6 | 21| 62|17 | 4181 | 33094
7 34 [ 118 | 18 | 6765 56570
8 | 55 (213 )19 | 10946 | 96430
9 | 89 [387 )20 | 17711 | 163945
10 | 144 | 688 | 21 | 28567 | 278087

TABLE 1. The number of Kekulé structures and the degree of freedom of Z,,.

Values in TABLE 1 coincide with those computed by Klein and Randi¢ (up to n = 14)
2.

4.2 The degree of freedom of Z(m,n)(m > 2)

Note that E.,(0) = 1, E,(1) = m + 1, f(0) = 0 and f;,,(1) = m + 1. By Theorem 2, we
have the following corollary:

Corollary 2
fm(n) = m(En(n—1)+ Eq(n-2))+

mfm(n—1) + fu(n = 2) + En(n — 2)),

En(n) = m(Em(n—1)+ En(n - 2)

form>2,n22 u]

From this result and computations similar to above, it follows that:

Theorem 4
5 e
Y Enlmet = —
30 1—mz—mz
(14 2)(1 4 ma?) 1
n b —

Efm('”)z T (1-ma-me?)? 1 - mz - me?

(144 mr 4+ me?) 1

T (U =mr—mat? 1= mr—ma?
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m+ vm? + din =
) 3

- vm? ~f 8
WOV IR g e L e T
2 b4 b—8

let 6 =
Bi+ 16+ 24 B(AS + }35'). Then we have

L _ 1 4 4 __h'_
.Ifm.‘a:~mr2_(],a_c)(]gj;)‘l-ﬂ.): 1= §z

1 A? B? 248

(L =mz —ma?)? (1 —bx)? £ (1=éx)2 (1 —éba)(l—dr)

Note that #(i) is the i coeflicient of i]‘TI_T‘H_lT Further easy computations lead to:

Theorem 5

Suln) = F(r) + F(n = 1) + mE(n = 2) + mF(n - 3) — (A8" + B&™).

a
In TABLE 2, we present the values of £, (n) and f,,(n) for e = 2 and n up to 15,
(0 Em) [ ) [0 | Ea(n) Falm)
0 1 08 3344 26752
1 3 319 9136 82224
2 8 16 | 10 24960 249600
3 22 66 | 11 68192 750112
4 60 240 | 12 186304 | 2235648
5 164 | 820 | 13| 508992 | 6616896
6 448 | 2688 | 14 | 1390592 | 19468288
7 1224 | 8568 | 15 | 3799168 | h6987520
TABLE 2. The number of Kekulé structures and the degree of freedom of 7(2,n).
4.3 The degree of freedom of R(n)
By convention, let rg = qp = 2. Also by simple calculation, ¢, = 40 and r, = 176.

Computations similar to those of the previous subsections lead to the following recursive
relations for r, and g¢,.

Corollary 3

T = Agn — Agn_y + 6402 + 187,21 + 367,02,
G = 18guy + 36g.-2,

Jorn > 2. [u]

If we let r{2) and g(x) denote the generating Mnctions of 7, and ¢, respectively, then

we obtain
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Theorem 6
2+ 4z
S e
ol s ~122 -6+ (4 ~ 4z + 6422)g(z)
1 — 18z — 3622

—122 -6 +8+8r+ 11222 4 25627
1~ 18z — 362? (1 - 18z — 3622)°

Further notations are needed. Let

7 = 9+3V13,

5 = 9-3VI13,
=

a = —

R

i st
-1

G(n) = a*(n+ 17" +b¥(n+1)5" + 2ablay™ + b3™).

With these notations and computations similar to those leading to Theorem 5, we obtain:
Theorem 7
To = 2,1 =176,
re = —6(ay" +b5") + 18(ay" " + b3™1) + 8G(n)
+8G(n — 1) + 112G(n — 2) + 256G(n - 3).

In TABLE 3, we present the values of ¢, and r,, for n up to 5.

n n Tn
0 2 2
1 40 176
2 792 6376
3 15696 183280
4 | 311040 4760640
5 | 6163776 | 116705088

TABLE 3. The number of Kekulé structures and the degree of freedom of R(n).
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