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Abstract

Within the framework of the Hiickel molecular orbital theory four
theorems are deduced, related tc the isomerization of alternant
hydrocarbons.

1. Introduction

Isomerism is an interesting subject of chemistry. From the point of
view of organic chemistry, the isomeric substances are classified into dif-
ferent categories, such as geometrical, structural, positional, optical,
topological and even rotational isomers [1]. The topological investigations
of isomeric structures allow one to speak of topomers, namely of isomeric
structures possessing different constitutions, but having isomorphic topo-
logical subspaces [2]. The pronounced differences in the chemical proper-
ties of isomers obviously arise from various realizations of a given topo-
logy. Indeed, the topological effect on molecular orbitals (3] (TEMO) pro-
vides solid evidence that topology plays a very important role. Topomers
have attracted the attention of variocus investigators [4-13]. In what fol-
lows, isomeric alternant hydrocarbons are studied in terms of molecular

orbttal energies
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2. Theory
In the present treatment of alternant hydrocarbons, rules governing the
structural isomerization are considered, in which the number of atoms and
carbon-carbon bonds remain constant throughout the isomerization process.

Suppose A and B are two isomeric even alternant hydrocarbons both hav-
ing 2n carbon atoms and e carbon-carbon bonds. Let Xl & Xz Eaie Xn > 0 and
X; = X; ... 0= X; > 0 stand for the occupied molecular orbital energies of
A and B, respectively.

Here and later the energies are expressed in the units of the HMO car-
bon-carbon rescnance integral g8 [2]. Consequently, the numbers Xx and X;
correspond to the eigenvalues of the molecular graphs of A and B, respect-
ively [2]. 1t is further assumed that neither A nor B have non-bonding mo-
lecular orbitals; this restriction is irrelevant for the subsequent consi-
derations, except in the case of Theorem 4.

According to a well-known relation in graph spectral theory [2],

n n
Ex)PP=gmit=e . (1)

i=1 i=1

3. The Main Results
Theorem 1.

n
0 < ¥ XX = e

1= !
Proof. Define the vectors C and D in the n-dimensional Euclidean space [14]
as C=(X , X_,..., Xn) and D = (X; . X; S X;). The scalar product

1 2

of these vectors is given by either (2) or (3):

n
CD=F X X (2)
1=1



= 2L -
and

n 1/2 n 1/2
cod = | L (x)? LX) cos ¢ (3)
1=1 =1

where ¢ is the angle between the vectors C and D. Bearing in mind relation

(1), we transform Eq. (3) into

n
}:Xlx'l=ecos¢. (4)
i=1

The angle ¢ occurring in Eq. (4) will be called the angle of isomerization
[15). Note that this angle is zero in the case of identity (A = B) or if
the molecular graphs of A and B are isospectral [18-20]. The angle of iso-
merization cannot be equal to m/2 because both Xl and X; are occupied mole-
cular orbitals, and thus X1 X; > 0. Even if non-bonding MOs are permitted,
the former condition will be fulfilled, at least, for i = 1. Then, obvious-

n
ly, E Xl K; >0 . Since cos ¢ =1, Theorem 1 follows. o
i1=1

Define the quantities Axl R S (% RPN PR X; = X‘ + AX‘

Theorem 2.

]
o

n
g Axl(x‘ + X;)

1=1

Proof .

n
E AX‘(K‘ + x;]

n n
Yoo~ R¥x e xy~ B
1 i= i=

2 a2
: [(Xl) = lX‘] ]

i 1

s 2t 2
= ) - Pt
i=1 1=1

The above is equal to zero because of Eq. (1). o
Theorem 3.

n
L @x)? < 2e

i=1
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Proof.

n 2 n 2 n 2 n
b} (AK[] = ¥ (X'I -X‘] = P &) F ¥ (X'i) —EZXi X
1=1 1=1 I= =

Because of Theorem 1,
n n 2 n 2
LI & FRIE e § odd
i=1 1=1 1=1

and now Theorem 3 follows from Eq. (1). o

Theorem 4. Let the characteristic pelynomial of the molecular graph of A be

written in the form xzﬂ + a :Kz“_2 s R xz + a . Then
n

n
)::[AXl/XlJ = (ea va) - n

=1

Proof. Since AX /X = (X! - X )J/X = (X'/X ) - 1,
| i £ i |

n n
E (Axl/x,) = L& X)-n . (5)
i=1 i=1

On the other hand, if we introduce the n-dimensional vector E as

E=(1/X , 1/X_...., 1/X ) , then
i 2 n

n 2 1/2 n 5 1/2
Kl (1/)1( ) = DeE = ’);1(}(') Z (l/xi) cos 3

n n
T /X)=§
=1 i= i=1

i ik

(6)

where B is the angle between D and E. The relation

n
2, _ z
El(lfxl) =a _/a (7
was deduced elsewhere [21]. Substituting (6) and (7) back into formula (5),

we readily obtain

n
B 172 "
l;1(1!)(II/)(1) = (e an_llan) cos 8 - n

from which Theorem 4 follows immediately. o
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3. Conclusion

The above theorems, proved here for isomeric even alternant hydrocar-
bons are also true for odd alternants. The reason for this is obvious: for
an odd alternant hydrocarbon with 2n+1 carbons atoms the (n+1)-th molecular
orbital is necessarilt non-bonding (2], i.e. XM] = 0. We can simply
disregard this energy level and treat the odd system as an even system with
2n carbon atoms, whose bonding energy levels are X1 2 X2 Xn . As
already menticned, if additional non-bonding MOs exist, then one must be
cautious in the case of Theorem 4, whereas the validity of the Theorems 1-3
is not affected.

On the other hand, the theorems presented above are true for all sorts

of structural Jisomers of alternant hydrocarbons, irrespective of any

difference in their gross or fine topologies.
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