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Abstract. The geometrical interpretation of En is presented.
A new type of formula in parametric form is derived
for the total m-electron energy of alternant hydrocarbons. It
has been proved that E_cannot be lower than (ne)'’? for

alternant hydrocarbons. The concept of angle of total n -

electron energy is developed.

1. Introduction.

Total n —electron energy ( En) is one of the most
important pieces of information about a conjugated molecule
which can be obtained from simple Hiickel molecular orbital
(HMO) calculations (1,2) The investigation of general
properties of Err has attracted the attention of many
researches and a great deal of effort has been made to derive
rigorous upper and lower bounds for En (3-16). McClelland’'s
formula was the first of such bounds (3). Nowadays, there are
very many known bounds for total n-electron energy formula. A
systematic study of all these approximate formulas revealed

that they are mainly based on number of vertices, number of
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edges and number of Kekule' structures (17,18).

In the present study, a generalized type of En formula
which has been recently reported (19) is converted to a
parametric form for total n—electron energies of
alternant hydrocarbons. Then the concept of the angle of
total n-electran energy is developed in the light of the

parametric En formula derived.

The total n-electron energy of an alternant hydrocarbon

having e bonds and 2n atoms is expressed by eq.1& {(19).
E=2me)’? cos 0 (0
m m

where, Drr is ‘the angle between the vectors A and B defined in

an n-dimensional Euclidean linear space (20) as follows,
Al Xi’ X2’ ...,Xn ) Bl 1,14...,1)

where Xl stand for occupied molecular orbital energies of
the molecule. Obviously eq.1 leads to McClellad’s upper bound

( eq.2 )} for E'_r energy (3) if one considers that cos Dn $ 1.

2
E = 2(ne)1/‘ 2)
n

Theorem 1. Let Eo be a Hiuckel graph having Zn vertices, e

edges and R rings. Then, the total n-electron energy cannot

be lower than (ne)l/z.

1/2

Draw a circle having radius of 2(ne) with centre at
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the origin of the coordinates (Fig.1). Let Z0S angle be equal

to O . Then the projection of radius 0S on the OY-axis for
angle 0 = Dn will be En energy of the conjugated molecule
corresponding to graph GD . Through the intersection of 0Y-

axis with the circle ( point Z ) draw a perpendicular to 0S5 .
Then, project the point U ( which is the foot of the previous
perpendicular )} on the O¥-axis and let the intersection point
be U’ .

Since, ZU | 0S and ES | OZ , 0OS = 0Z = 2(ne)1/2 and OE =
05 cos 0, OU=0Z cos 0 then OE = OU . Let it be OE = E .

Obviously, the difference , h , which is equal to E - DU’ can

be expressed as ,

1/2

h = ( 2(ne) - E ) cos D (3)
A 1/2
Inserting E = 2(ne) cos 0 , eq.3 becomes ,
b= 2(ne)1/2 ( cos O - cosz 0D 4)
On the other hand, insertion of cos O = E/2(ne)“2 converts
eq.3 into eq.5 .
h=E - (¢ E2/2(he)1/2 ) (3)

The function h(E) is a parabolic function of E having
its maximum at E = (ne)1/2/2 .

On the other hand, starting from eq.S one gets

E2 - 2tned¥2 E + 2(ne’?2 h = ¢ @)

which leads to
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E= tne)?’2 &+ { ne - 2tne 172 h (172 (7
Y
z
E
.
U
0 > X

Figure 1. The geometrical meaning of En energy.

Obviously, eq.7 produces En if one substitutes h = hn. Since,
En and hn are real positive quantities (see eqs.1 and 4) then

the minumum value of eq.7 is obtained for the maximum value

of h ( hmax = (1'19)1/2 / 2 ) which leads to (rae)l/2 for lower
bound for E_ .
n
On the other hand , by substituting E 3 (ne¥'’2  into

eq.1 and solving for Dn yields O g n/3 which proves the

following corollary .

Corollary 1. Let Gn be & Hickel graph having 2n vertices and

e edges . Then Dn ¢ n/3 holds .

Theorem 2 . Let Eu be a Hiickel graph having 2n vertices and
e edges . Let A represent the adjacency matrix of Go - If
n/2

|det A 3 ( e(n-1)/n(2n-1) ) holds then On for B, is less
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Consider eqs. S5 and 7 and let

¥= o2 4 { ne - 2t V72 172 @

and

2
h =X - x2r2tner 142 (N

By substituting eq.% into eq.8 one obtains

Y= e 7 (V2 - % (10
which vyields
Y] = X (11)
and
Y2 = 2(ne)1,2 = X (12)

Now, draw a circle having radious of 2(:’19)1/2 with centre
at the origin of the coordinates (Fig.2) - From the
intersection points of the circle with the axes draw
parallel 1lines to X and Y axes to get a square. Let points D
and G be the intersections of the diagonals with each other
and one of the diagonal ( the one having the positive slope)
with the circle, respectively. E? is the radius vector which
sweeps angle 0 . Note that its projection on the X-axis is
equal En for 0= Dn . The diagonals are analytically
represented by eqs. 11 and 12 .

Since, egs. 11 and 12 are obtained from eqs. 8 and 9 ,

1/2
1

then as X varies in the range of 0 and 2(ne) Y1 also
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varies in the same range and becomes E“ for X = En .

—

As vector OF rotates in positive direction , point F
approaches and coincides with point G which is a common point
of the circle with the diagonal OC. The coordinates of point

; 1/2 1/2 2
G can be found easily as (2en} and (2en) y respectively.

As it is seen from Fig.2, if Enb (Qen)llz then point F on
the circle has te lie in between points 6 and B . Since,

McClelland’'s lower bound (3) is given as

5]

(@] . H
B B

Figure 2. The geometrical interpretation of upper and lower

bounds for En of alternant hydrocarbons .

2/n 172
E,» ( Ze + 2n(2n-1) |det Al ) =
Then, if

1/2
E % Ey 3 (Zem (14)

- —~
occurs , conseqguently FB < GB which means Dn § n/s4a .

fombining inegs. 13 and 14 in the desired way, one obtains

|2/n

Ze + 2n(2n-1) [det A 3 Zne as)
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which yields

-
ldet Al 3 ¢ etn-1)/n(zn-1) )™2 (16)

Theorem Z. Let Bn be a benzenoid graph having 2n vertices and

e edges. If 2e2 - %en + 12n2 % 0 holds then Dn < n/4.

&
It is known that for benzenoid hydrocarbons ineq.17 1is
valid (1&) .
3 172

En 3 (4de”/(%e — 12n) ) a7

If,

o ]
( 4e°/(9e - t12m 1177 3 (zney 172 (18)

holds then from Fig.2 it is obvious that On < n/4

Rearranging ineq.18 , one obtains

26 - 9en + 12n° 3 O (19)

which proves the theorem.

Conjecture 1. For alternant hydrocarbons having 2Zn atoms such
that the numbers of starred and unstarred atoms obey

n - n=0or 1 ( Kekule type (2)) Dn £ n/4 holds .

3.Results and Discussion.

The angle Dn is an important topological parameters of
molecules. All the variations in fine topology are included
in cos Un term. As it is proved above, for alternant

hydrocarbons, Dn,in theory, should vary in between O and 60.

However, a search involved very many alternant systems



- 250 ~

revealed that Dn & 45 . Cyclobutadiene and methylenepropenyl

system are almost all the examples for which Dn= 45 . On the

Table 1.

En and Dn values of certain alternant hydrcarbons.

Molecule En(zl) Dn B
Benzene 8.000 19.471
Naphtahalene 1Z%.4684 22.4694
Anthracene 19.312 24.160
Phenantrene 19.448 23.244
Triphenylene 25.274 23.189
Ferylene 28.245 24,272
Coronene 34.571 24,352
Ovalene 46.497 24.8104
Butadiene 4.472 24,098
Cyclobutadiene 4.000 45.000
Cyclooctatetraene ?.657 31.398
Biphenyl 16.383 21.950
1,1-Diphenylethylene 18.815 23.353
2-Vinylbutadiene 6.899 27.044

other hand, ethylene is on the other extereme having Dn= o .
Table 1. displays the exact En and D“ values of certain

alternant hydrocarbons which possess 0" £ 45 .



=251 =

4. Conclusion.

The present work emphasizes the importance of the
generalized McClelland type formula (eg.1) . It yields a
brand new En formula (eq.7) which is the function of n, e and
h. It appears to be a very potential formula to enlighten the
importance of some mysterious topological parameters which
dictate even the fine variations in total n-electron energies
of alternant hydrocarbons. Note that all the theorems and
formulas given above can be modified for odd alternant
systems by replacing n with N/2 where N is the number of

atoms.
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