m@i’@h no. 27 pp. 175-189 1992

AEGIS, A STRUCTURE GENERATION PROGRAM IN PROLOG
H.J. Luinge

Analytische Molecuulspectrometrie, Universiteit Utrecht,
P.O. Box 80083, 3508 TB Utrecht, The Netherlands

(received: October 1992)

ABSTRACT

A description of the algorithm of the structure generator AEGIS is
presented together with examples that illustrate the exhaustiveness
and non-redundancy of the results.

INTRODUCTION

In our laboratory we have developed a knowledge-based system for the interpretation
of infrared spectra (EXSPEC, [1]). This system contains a structure generator (AEGIS,
[2]) capable of constructing all possible molecular structures starting from a molecular
formula and any constraint on the presence and/or absence of structural fragments. An
important topic in automated structure handling is the perception of rings. Therefore,
AEGIS has been provided with a procedure that detects the smallest set of smallest rings
(SSSR) and the largest ring in each structure generated. The system is written in Prolog
using the list processing facilities of this programming language to expand fragments
towards complete structures. This paper presents a summary of the algorithm and its
implementation in Prolog. Furthermore, a number of examples serves to illustrate the
exhaustiveness of the program as well as its non-redundancy.

THE ALGORITHM

Structure generation as performed by AEGIS is divided into the following steps:
(1) input of a molecular formula;
(2) calculation of the mass and the number of rings and/or unsaturated bonds;
(3) construction of the skeleton of the molecule consisting of atoms and single bonds;

- 176 -

(4) addition of bonds in order to form double and triple bonds and rings.

During structure generation two stacks are maintained onto which partial structures are
stored. The first stack contains all intermediate structures. At each cycle of the generation
process a partial structure is removed from the top of this stack. Addition of building
blocks to this partial structure yields new structures that are stored onto the second stack.
This procedure is repeated until no more structures are left on the first stack. Then the
entire second stack is copied to the first stack, the second stack emptied and the process
repeated. Hence, structure generation in AEGIS is performed in a breadth-first sense.

Partial and completed structures are compared for uniqueness with all other structures
of the same size generated. As with increasing numbers of atoms the number of possible
isomers grows roughly exponentially, the user is provided with the option to impose
additional constraints on the generation process, These constraints are defined in terms of
the presence or absence of structural fragments as suggested by the spectrum
interpretation module of the EXSPEC system.

THE IMPLEMENTATION

The structure generation algorithm has been written in LPA MacProlog and
implemented on an Apple Macintosh II computer. Details of the program are given
below. For a more elaborate discussion on Prolog the reader is referred to the references
[3,4,5,6].

Structures are represented as a list of non-hydrogen atoms and a list of interconnecting
bonds. Butanol-2 for instance is represented as:

Atoms = [['C', al, 0], ['C, a2, 0], ['C, a3, 0], ['C, a4, 0], ['O', a5, 0]]
Bonds = [[s, al, a2], [s, a2, a3], [s, a3, ad], [s, a2, a5]].

A label (al to a5) is assigned to each atom as well as a number stating the free valences
left. Clearly, for completed structures this number equals zero. Bond types are
represented by s, d, t or a for single, double, triple or aromatic bond respectively.

An important part of the structure generation process is the detection of sets of
equivalent nodes in partial structures. Building blocks need only to be added to one node
in each set in order to obtain expanded partial structures. A flowchart of the procedure is
depicted in figure 1. The Prolog source code that is used for this purpose is as follows:

01 get_equivalent_atoms([Atoms, Bonds]) :-
02 remember{equivalent_sets, []),

03 remember(atoms_done, []),

04 on([Atomtype, Label 1, Free_valences], Atoms),
05 Free_valences > 0,

06 recall(atoms_done, Done),

Q7 not(on(Label_1, Done)),

08 remember(atoms_done, [Label 1 | Done]),

09 recall(equivalent_sets, Equivalent),

« 177 =

10 remember(equivalent_sets, [[Label_1] | Equivalent]),
11 on([Atomtype, Label_2, Free_valences], Atoms),

12 recall(atoms_done, Done_2),

i3 not(on(Label 2, Done 2}),

14 one same_topology(Label 1, Label 2, Atoms, Bonds, Atoms, Bonds),
15 remember(atoms_done, [Label_2 | Done_2]),

16 recall(equivalent_sets, [Set | Rest]),

17 append(Set, [Label_2], New_Set),

18 remember(equivalent_sets, [New_Set | Rest]),

19 fail.

20 get equivalent_atoms([Atoms, Bonds], Sets) :-

21 recall(equivalent_sets, Sets).

First, two lists are initialised to empty lists for storage of the resulting sets of
equivalent nodes and the atoms that have been handled (line 02-03). Next, an atom is
selected from the list of atoms (line 04). As building blocks can only be added to nodes
with free valences left, the current atom is checked for this feature (line 05) and stored in
the list of handled atoms (line 06-08). Also, it is stored in an, at the moment, empty set of
equivalent nodes (line 09-10). A second atom is selected from the list of atoms (line 11).
This atom must have the same number of free valences as the previous atom.
Furthermore, it should not be on the list of handled atoms (line 12-13) and it should have
the same topology (line 14). If this is all true, the atom is added to the list of handled
atoms (line 15) and appended to the same set of equivalent atoms as the previous atom
(line 16-18). The 'fail’ statement (line 19) causes backtracking to take place (to Line 11),
ensuring that all atoms with the same number of free valences and topology are added to
the current set as well. When a set of equivalent nodes is completed, backtracking (to line
4) results in finding a new atom from the atom list, constructing a new set of equivalent
nodes (line 10) and repeating the entire process until all atoms have been handled. The
second clause for the relation 'get_equivalent atoms' retrieves the sets of equivalent
nodes found (line 20-21). As an example the equivalent sets of nodes as found for
adamantane are shown in figure 2. Generation of adamantanol isomers starting from this
skeleton is achieved by adding a hydroxyl unit to a node from each of the sets thus
yielding two isomers.

10 5

Equivalent nodes: [1, 3, 5, 8] and [2, 4, 6, 7, 10]

FIGURE 2. Adamantane skeleton and the corresponding sets of equivalent
nodes.

