mefleh no. 24 pp. 191-199 1989

A NOVEL APPROACH TO GRAPH POLYNOMIALS

*k
VLADIMIR R. ROSRNFELD* and IVAN GUTMAN o

Tat'yanicheva 59, Chelyabinsk 454126, USSR, and

*k : i
Faculty of Science, Kragujevac, Yugoslavia

(Received: August 1988)

A number of graph polynomials (matching, characteristic,

permanental, p-polynecmial) and their generalizaticns can

be expressed by means of a differential operator, associ-
ated with the graph.

Graph polynomials play an autstanding role in mathema-
tical chemistry and, in particular, in chemical graph theory
{1-3). In the last few years the research in this field was
so vigerous that only in the period 1980-1985 about 600 che-
mical papers were published on graph polynomials and closely
related issues [4). Bearing this in mind it is somewhat sur-
prising that there still are some quite general mathematical
properties of (chemically interesting) graph polynomials
which have so far escaped the attention of both mathematicians
and mathematical chemists. In the present paper we point out
a few such properties and, in particular, demonstrate a new
way in which a variety of graph polynomials can be expressed
in a remarkably uniform way. Furthermore, the present paper
is (to the authors' knowledge) the first time that a differ-
ential operator is employed as a mathematical tool in dealing
with graph polynomials. Our results thus reveal certain
hitherto unnoticed analytical properties of these polynomials.
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Let G be a graph and let its vertices be labeled by
1,2,...,n. A graph is completely determined by the specifica-
tion of the connectedness of its vertices. This information
is often presented in the form of the adjacency matrix A, whose
(r,s)-entry is equal to unity if the vertices r and s are ad-
jacent, and is equal to zero otherwise. Another, less common
way to determine the graph G is to introduce n variables

XqsXgaeen, Xy and to construct a differential operator 7

? -
r adj s Xp #Xg
r<s
Throughout this paper we shall frequently refer to the

product of the variables XqsXgpeeesXy and denote this product
by X

Then it is clear that also DX characterizes the graph G up to

isomorphism.
Consider as an example the graph G,i

1

Then
3? 32 32 . 32
e o R T 5%, 3%, | 9% 0%,

and consequently,

X = XgX, o+ XqeXy f Xq'Xg t XqtXg



Examine now the expression on the right-hand side of the
latter equation. It contains four summands, which means that
Gy has four cdges., The first summand is the product XzXy
and since the variables Xy and x, are missing from it; we can
conclude that the vertices 1 and 2 are adjacent. The second,
third and fourth product terms contain the information that
also the vertex pairs (2,3), (2,4) and (3,4), respectively,
are adjacent. This completely determines G‘.
In the present paper we shall be concerned with certain
graph polynomials [4]
The matching polyncmial [5,6] is defined as

Y = ¢ nFae, B

%
where m(G,k) is the number of k-matchings of G, that is the
number of ways in which k mutually non-incident edges can be
chosen in G. We further introduce a closely related polynomial

o' (6, %) = £ m(G, k) x""ZK
k
The characteristic polynomial [2,5] of a graph G is just
the characteristic polynomial of its adjacency matrix:

$7(G,x) = det(x I - A) -

Here I is the unit matrix of order n.
The permanental polynomial {5,7] is
6*(G,x) = per(x I + A)

where per stands for the permanent.

We define the generalized characteristic and permanental
polynomials in the following manner. Let X be a diagonal matrix
of order n, whose diagonal entires are the variables Xq,X;,...,
Xp- Then

¢ (6, X, ,Xg, 00 0,Xp ) = det(X - A)

¢+(G,x1,x2,...,xn) = per(X + A) .
Evidently, the above generalized quantitics are linear functions
of each x,, i=1, 2,...,n By choosing x, = x, = .. = x_ = x they
reduce to ¢ (G,x) and ¢ (G, %), respect1ve1y. It is not difficult
to see that ¢ (G,x1,xz,...,xn) and ¢ (C,x1,x2,...,xn) determine



will be equal to unity.

There exist k! different ways to generate a summand cor-
responding to a given choice of k non-incident edges. There-
fore by setting Xy =Xy = ccro=xp =1 into pK X we obtain a
quantity which is k! times the number of distinct selections

of k non-incident edges in G, i.e. m(G,k). "

Theorem 1 has a few interesting consequences. They are
obtained by taking into account that

T (1/k1) 0¥ = exp(®)
k
and

: 10K 7k 0¥ = exp-m) .

The Hosoya index [z)s] of a hydrocarbon is equal to the
sum of all the matching numbers of the corresponding molecular
graph.

Corolarry 1.1. If Z is the Hoscya index of a molecular graph

G, then for xq = X, = *=+ =x =1,

Z = exp(?) X .


















