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Abstract

It is shcwn that in the case of large molecules the Hosoya
index is an exponential function of the number of edges of
the molecular graph. This result holds irrespective of any
other structural detail of the molecule considered. Appro-
ximate formulas for the Hosoya index can be tested on the
basis of the vresent findings. Only the approximate formu-
la from Raf. 5 has the regquired asymptotic behaviour. 4
mistake in Ref. 5 is corrected.

INTRODUCTION

The Hosoya index Z(G) of a (molecular) graph G is equal
to the total number of matchings of G. It has been introduced
in 1671 by Haruo Hosoya1 and eventually found various physico-
chemical applications. For a detailed exposition of the thecry

of the Hosoya index see the booka.



It is a well-known fact3 that the Hosoya index rapidly
increases with the increasing size of the respective graph
(i.e. with the increasing number of vertices and/or edges).
However, practically nothing is known about the dependence
of Z on the structure of the graph when its size is very
large (or more precisely: when its size tends to infinity).
The aim of the present paper is to fil this gap.

y

The calculation of the Hosoya index is not easy and is
usually performed by means of pertinent recurrence relati-
0ns1’2. Therefore the evaluation of Z(G) for large polycyc~
lic graphs is a fairly difficulat task and exact Z values

are known cnly in a rather limited number of cases3. In order
to overcome this difficulty, approximate formulas for Z(G)
have been designed5-7, which make the (approximate) cal-
culation of Z of large molecular graphs quite easy. However,
the quality of these approximations could be tested only if

exact 7 values for large molecular graphs were available.

THE MAIN RESULTS

In the present paper we show that the Hosoya index of a
molecular graph G increases as an exponential funetion of m{G),
the number of edges of G. In particular, we prove the follow=-
ing two results.

Denote by m = m(G) and D = D(G) the number of edges and

the maximal degree of a vertex, respectively, of the graph GC.



Theorem 1. If G is a connected graph with more than two ver-

tices, then

(up-1)"" 1n(4p-3) m < 1nZ < m . (1)

Let G1,G9,...,Gk,... be an infinite series of connected
graphs, such that Gk+1 has more vertices and more edges than
the graph Gk‘

Theorem 2. If D(Gk) is independent of k (and is equal to D),

then for % —5C& the limit L
L = lim m(G )" 1n 2(G)
exists and
(4p-4)""1 1n(4D-3) ¢ L < 1.

This means that for large values of k, Z(Gk) asympto-
tically behaves as exp[L m(Gk)], i.e. the Hosoya index is an

exponential function of the number of edges.

FROOFS

First of all, one should note that Theorem 2 is an imme-~
diate consequences of Theorem 1.
In order to prove Theorem 1 we introduce the following

notatione. The graph G has n vertices, m edges and the maxi-
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mal degree of a vertex of G is D. The zeros of the matching

polynomiala'10 of G are Xpy Xopeewy X and they are labeled so
that x, 2> x5 2...2 x,.

Then according to the well-known pr'oper'ty8 Xy v X 5000 ¢ 0,
we have x12 > xi2 for all 1=22,3,. «lle

. oo 65T 10
We further recall the identity
n
2
E x° =2m. (2)
i=1

In Ref. 6 has been shown that thz Hosoya index is related
to the zeros of the matching polynomials in the following man-

ner:

n

ln Z = 0.5 E In(1 + xi2) . (3)

1:=9

In addition to Egs. (2) and (3) we shall need an auxilia-

ry result, which we formulate as

Lemma 1. Let a be a positive constant and t = a~! 1nQi+a).

Then the inequalities
tx < 1n(1 + x) < x (4)

hold for all values of x from the interval (0,a).
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Progf. From the series

exp(x) = 1 + x + x2/2! + x3/3! + e

is evident that exp{x) < 1 + x for all positive values of x.
Hence the right-hand side of (4) follows.

Conzider now the function

fix) = exp(sx) - (1 + x)

where s is a parameter, 0 < s < 1. Let b be the (unique) non-

-zero solution of the equaton f{(x) = 0. Then

f(x) <0 for G < x<b (5)

In order to see this, observe that f(0) = 0 and df{Q)/dx =
= s - 1< 0, Whence for positive, near-zero values of x, f(x)
is a decreasing function, i.e. its values are less than f£(0).
Consequently, f(x) must be negative. Since f(x) changes sign
at x = b, the inequality (5) follows.

The guantities b and s are related as s = B In(1 + b).
Bearing in mind that for all positive values of b, the value
of b_1 In{1 + b) is less than unity, we arrive at the left-

-hand side of (4) by setting t = s and a = D.

Lemma 1 is thus proved.
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f.e. %

Let X be an upper bound of x 1

1 < X. Then Lemma

1 implies that for t = X'E In(1 + X2),

2 2
toxg < 1ln(1 + X I 4 Xy

2

holds for i=1,2,...,n 1i.e. for all zeros of the matching
polynomial of the graph G. Combining the above inequalities

with the identities (2) and (3) we arrive at

tm < lnZ < m. (6)
The statement of Theorem 1 is now obtained from the result”’12
that X = 2(D - 1)”2 is an upper bound for the greatest zero

of the matching polynomial of a connected graph with more than

two vertices. Then (1) follows from (6).

DISCUSSION

It is worth noting that the inequality x, < 2(D - n1/e

is strict for all graphs. Nevertheless, for certain graphs, the

])1/2 12

difference x, - 2(D - can become arbitrarily small ' °,

1
Thus 2(D - 1)1/2 is the best possible upper bound for X
depending (solely) on the maximal vertex degree.
In molecular graphs, only three differernt values of D can
cccur, namely 2, 3 and 4. For D = 2, 3 and 4, (4D - u)“ In(4D - 3)

is equal to 0.402, 0.275 and 0.214, respectively.
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In the case of bipartite graphs (molecular graphs of al-

ternant hydrocarbons), the upper bound for x
12

; can be improv-

ed

Let G be a bipartite graph and its vertices divided into
two classes, such that adjacent vertices are never in the sa-~
me class. Let D1 and D2 denote the maximal degree of a vertex

from the first and second class, respectively. Let

1)1/’2 e 1)1/2

F = (D1 (D2 - .

2
ThenT‘ F is an upper bound for X On the basis of this result

one can improve Theorem 1 in the following manner.

Theorem 3. If G is a connected bipartite graph, then

'2ln(1+F‘2)m < InZ < m

F

Let Z*(G) be an approximate topological formula for the
Hosoya index Z(G). From Theorem 2 we see that Z¥ must meet the
requirement that when the size of the graph G is sufficiently
large, then In Z#(G) is linearly dependent on m(G). Among the
approximate formulas for Z, proposed recently by the present
author and his coworker55'7, only the formula from Ref. 5 has
the necessary linear dependence on m. Hence, although the for-
mulas from Refs. 6 and 7 give quite reliable results for me-

dium-sized molecular graphs, their applicability to very large

graphs is now seen to be unjustified.



- 102 -

Concerning the approximate formula Z¥(G), put forward in
Ref. 5, a certain mistake must be pointed out.
Let G G

Gk"" be the same infinite sequence of

1* DI G N
graphs as considered in connection with Theorem 2. The expres-
sion for the asymptotic behaviour of Z*(Gk) (the formula after

Eq. (10) in Ref. 5) is incorrect and should read:

h(G, )
%6, ) Ry t7/2 n(Gk)t/2 W' 1w qrey ¥

where

1/2

W= (p - q2/r - q) /(1 + q/r)

and where t is an empirical parameter whose numerical value has

been determined in Ref. 5. Further,

©
"

lim d(Gk)/n(Gk)

e}
"

1lim m(Gk)/n(Gk)

r = lim h(G,)/n(G,)

The above three limits are for k -»OQ . In accordance with
the nctation of Ref. 5, d(G) and h(G) denote the sum of the
squares of the vertex degrees and the size of the maximal match-
ing, respectively. For molecular graphs, p, g and r are neces-

sarily finite and non-zero.
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Since for large values of k,

h(Gk)Chﬁ(r/q) m(Gk)

we see that

ln Z*(Gk) 2~ (r/q) 1n(1 + q/r) m(Gk)

in agreement with the results of the present paper.

10.
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