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Abstract: All-benzenoid systems have been enumerated by computer aid, Sepa-
rate numbers for catacondensed (up to k=22) and pericondensed (up to %=18)
systems are reported along with the information about symmetry. Here A is
used to denote the number of hexagons of the system. All the generated sys-—
tems for 7 < 13 are depicted and their X numbers given. K designates the
number of Kekul& structures. Fourteen classes of all-benzenoids are summa-
rized; they have been studied previocusly with respect to the K numbers. A
program is outlined for further studies in this area.

INTRODUCTION

In the studies of all-benzenoid systems the concept of Clar's sextet
[1] is crucial. In the wording of RandiZ [2]: "For these compounds one can
write a valence structure in which a ring is either represented as an iso-
lated sextet or is devoid of conjugation.”" A precise definition has been
given by Polansky and Derflinger [3], followed by a graph-theoretical
treatment of Polansky and Rouvray [4]. Later it was commented and supple-
mented by Polansky and Gutman [5], who also produced a general procedure
for determining the number of Kekulé structures for all-benzenoid systems.

An aromatic sextet in a given Kekul@ structure is characterized by a
hexagon with three double bonds (as in benzene). In an all-benzenoid system
it is possible, in a certain number of Kekul& structures, to assign uniquely
a pattern of sextets throughout, so that the remaining hexagons do not pos-—
sess any additional double bonds. The sextets determine the set of full
hexagons (F), conventionally drawn with inscribed circles, while the others

are referred to as empty (E). In all-benzenoid systems the classification of
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the hexagons into full and empty is unique (see the subsequent article).
Benzene itself and polyphenylenes are trivial examples of all-benzenoid
systems without empty hexagons; the polyphenylenes are furthermore disconnec-—
ted (and therefore not benzenoids in a strict sence). A less trivial example
is triphenylene (cf. Fig. 1), an empty hexagon surrounded by three full. As a
matter of fact any empty hexagon in an all-benzenoid is always surrounded by

three full hexagons in a trigonal configuration as in triphenylene.

Biphenyt Taiphenylene

_———
° & &°

K=4 K=9

Fig. 1. Simple or trivial examples of all-benzenoid systems.

The present work was inspired by a recent paper of Knop et al. [6]
containing extensive computerized enumerations of benzenoids. As a minor
part of this paper 18 sextet 2-factorable benzenoids are depicted; the
category appears to be synonymous with all-benzenoids. In spite of the rela-
tively small number (eighteen) the reported systems are complete up to k=10,
where /7 designates the number of hexagons. We have developed a new, simple
algorithm for generating all-benzenoids., 1t has enabled us to enumerate

these systems specifically up to A=18.

GENERATION ALGORITHM

All-benzencid systems are generated successively by additions of three
hexagons, two hexagons or cne hexagon to lower members, following certain
rules. We refer to these three possibilities as (i) # = A+3, (ii) % - A+2

and (iii) % -+ h+l additions, respectively.
(i) # + h+3 (one-contact addition)

A free edge is defined as an edge between two vertices of second
degree. In an all-benzenoid a free edge can obviously occur only in F. A
new all-benzenoid is produced by adding an I to the free edge, succeeded by
twe F's added to non-incident free edges of the last added E. In other

words: a phenanthrene is added to a free edge of an F so that a tripheny-

lene subunit is formed (see Fig. 2).
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Fig. 2. Three ways of generating an all-benzencid from an
all-benzenoid with less hexagons.

(ii) # + h+2 (three-contact addition)

Assume an all-benzenoid with a bay region, which by definition is
formed by three edges of the perimeter between vertices of second, third,
third and second degree in that order. It is evident that a bay region of
an all-benzenoid must belong to an F-E-F configuration. A new all-benzenoid
is produced by adding an £ so that three of its edges constitute the bay
and annelating an F to the free edge of this E. In other words: a naphtha-

lene is imbedded into the bay (see Fig. 2).
(iii) 7 > A+l (five-contact addition)

A fjord may occur in an all-benzenoid and is defined as a configura-—
tion of five edges of the perimeter between vertices of second, four times
third and second degree in that order. These edges must clearly belong to an
F=F=F-f-F configuration when dealing with all-benzenoids. A new all-benze-
noid is produced by adding a hexagon which shares five of its edges with the
fjord. ln other words: a hexagon (or benzene) is immersed into the fjord
(see Fig. 2).

A procedure was added to the previously described computer program
[7, 8] to account for the geveration of all-benzenoids according to the
principles described above.

1n a separate run ull-berzenoids were generated from benzene by using
the 2 + /i+3 additions only.

The results of enumer:ition are collected in Table L. The numbers for
total all-benzencids reproduce the Knop et al. [6] numbers up to #=10, which
cover 18 systems. Altugether we have generated 13650 systems (7 < 22 cata-

condensed, 1 < 18 total),
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Table 1. Numbers of all-benzenoids (eata catacondensed; peri pericondensed)
and their distribution into symmetry groups.

4 D Sn P Cwm Pm Cu O o i
_I— cata 1 Q0 [¢] 0 0 [¢] 0 0 1
4 eqta 0 0 1 0 0 0 0 0 1
6 pert 0 0 0 0 1 0 0 0 1
7 cata 0 0 [¢] 0 1 0 1 0 2
8 peri 0 ] 0 0 0 0 1 0 1
9 pert 0 0 ] 0 0 0 1 2 3
10 { ecata 0 0 1 0 0 0 2 3 } 9
pert 0 0 1 0 0 1 1 0
11 pert 0 0 0 0 2 0 2 6 10
12 pert 0 ] 0 (V] 1 2 5 21 29
m4sE I 6 & § 3 8 % HI =
14 peri 0 0 0 0 1 2 12 87 102
15 peri 0 0 0 (o} 0 2 14 243 259
mi{Xe § 5 § 1 1 9§ 1 Sy o
L peri 0 0 0 o] 2 11 38 1085 1136
18 pert 0 ¥} 0 Q 1 22 58 2632 2713
12 cata 0 0 0 2 1 19 41 1076
22 cata 0 0 0 8 0 0 79 1574

GENERAL CLASSIFICATION

A survey of the enumeration of benzenoids has appeared as a consolida-
ted report by fourteen authors [9]. It may be consulted for definitions of
classes of benzenoids,

All-benzenoids are Kekul&an systems and have therefore invariably A=0
(i.e. the same number of black and white vertices). In the frames of the
neo classification [7, 9] the considered systems are all normal (n). A for-
mal demonstration of this fact is given in the subsequent article.

An all-benzenoid may be catacondensed or pericondensed. In the sub-
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sequent article it is also shown that catacondensed all-benzenoids occur for
every third k value, viz. % =1, 4, 7, .... , whereas pericondensed all-
benzenoids exist for #=6 and all % > 8. The catacondensed systems were gene-
rated specifically by taking into account the one-contact additions (A -+
/+3) only; see above.

In Table 1 the numbers of catacondensed and pericondensed all-benze-
noids are entered separately; the latter cnes were obtained by subtracticn
from total. A special procedure for determining the symmetry was incorpo-
rated into the computer program [8]. The numbers within each symmetry group

are reported (Table 1).

FORMS OF THE SYSTEMS, AND THEIR K NUMBERS

The forms of the generated all-benzenoid systems up to 4=13 are dis-—
played iun Fig. 3. The first eighteen pictures reproduce exactly those of
Knop et al. [6].

A special program, based on a technique proposed by Brown [10], was
used to compute the numbers of Kekulé structures (K) for the systems. In
Fig. 3 the systems are ordered according to increasing X numbers.

SPECIAL CLASSIFICATLON

A glance at Fig. 3 shows that several of the benzenoids therein may
be grouped into special classes, for which it is of interest to derive the
combinatorial X formulas.

In the monograph [11] results for fourteen classes of all-benzenocids
have been collected; one member of each class {for the parameter value
equal to 3) is depicted in Fig. 4, which also contains the notation. The
mentioned reference [11] gives explicit X formulas for all these classes
but one, viz. $(n). Recurrence relations are given for all cases, including
S(n).

All the benzenoid classes of Fig. 4 may be interpreted as repeated
wnitls in one way or another with allowance for modifications at the ends.
Most of the classes are fused repeated units modified at one or both ends.
Two benzenoid units are said to be fused when they share exactly one edge.

Several methods for the enumeration of Kekul& structures have been
developed, which are applicable to benzenoid systems with repeated units.
(i) Studies of the sextet polynomial and its recurrence properties [12-14].
An operator technique has been developed for obtaining efficiently the

recurrence relations [15]. (ii) Method of linearly coupled recurrence rela-
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Fig. 3. Listing of all-benzenoids for A < 13, K numbers are given. Bracketed
systems are isoarithmic. (For h=13, see next page.)
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tions [16]. Here several benzenoid classes are considered simultaneously.
The method is based on the fragmentation technique due to Randié [17], and
has been widely used; see [11] and references cited therein, e.g. [18-22].
A general formulation for fused repeated units is available [23]. (iii) A
still more general method for one-dimensional polymers has been worked out
[24] and applied to a variety of benzenoid (and non-benzenoid) classes [25].
(iv) Application of the reduced graph model [26]. The technique has been
applied to benzenoids with repeated units [27]. (v) A method referred to as
the transfer matrix formulation [28] has also been used to enumerate the
Kekulé structures of a benzenoid class with repeated units [29].

Figure 5 shows a typical example of an all-benzenoid class, which
sometimes is called "pyrenes on a string'. Here it is designated by P(n).
Members of this class have been considered by several authors [2, 5, 6, 11,
14, 22, 23, 30]. The system may be interpreted as n fused benzolelpyrenes
with one hexagon added at the appropriate end. The recurrence relation for
the numbers of Kekul& structures, say K{P(n)}, is implied in the work of

Ohkami and Hosoya [l4]. It reads
k(p(m)} = 10&{pP(n-1)} - K{P(n-2)}; n>2

The explicit formula was first given by Cyvin, Cyvin and Gutman [22] and
reads:

K{p(m)} = L [(5 - 2‘\'[5—)7“'1 = i 2%)”"1]

e

The hydrocarbons corresponding to P(1) and P(2) are known in organic

chemistry according to the recent, useful monograph of Dias [31].

Fig. 5. A class of all-benzencids: "pyrenes on a string".
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PROGRAM OF FUTURE WORK

The generated all-benzenoid systems, as displayed in Fig. 3, suggest
a number of new classes, which might be interesting to study with respect
to their numbers of Kekulé structures. It is planned to give a systematic
account of so many new all-benzencid classes that all the forms for 2 < 11
are covered among their members. In some cases it is expected that known
methods will lead to recurrence relations and explicit X formulas similar

to the case of "pyrenes on a string' (see above). But also interesting new

features are to be expected.
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