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ABSTRACT

Two types of §,T-isomers are considered., All of these which
are called Sj, TB' SA’ Ta—isomers are benzenoid systems formed
from two identical subunits A and A'. It is proved that if the
number of vertices of A is odd then the number of Xekulé struc-
tures of the 53(54)-1somer is equal to zero, Furthermore, the
SB(SA)—isomer does not have more aromatic M sextets than its
corresponding TB(TA)-isomer. Analogous results for Kekulé

structures are also obtained.

The concept of §,T-isomers was introduced in [1]. In (2],
f}] and fh] some interesting topological properties of certain
types of S,T-isomers were obtained, In this paper, two types of
3,T-iscmers are considered, Both of them are benzenoid systems.

It is well known that any benzenoid system B is bipartite and
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its vertices can be colored by two colors, so that the vertices
of the same color are never adjacent. Recall that a Clar for-
mula is obtained by drawing circles in some of the hexagons of
B. These circles represent the so called 'aromatic sextets'.
The rules for constructing Clar formulas are the following:

(a) It is not allowed to draw circles in adjacent hexagons;

(b) Circles can be drawn in hexagons if the rest of the conju—
gated system has at least one Kekulé structure;

{(c) A Clar formula contains the maximum number of circles,
which can be drawn in accordance with the rules (a) and (b).

If only the rules (a) and (b) are obeyed, we have gene—
ralized Clar formulas. [5).

Im [6], the three different models of topological related
isomers S and T were given, Among those models, the model 2 is
formed from three subunits: two terminal ones, A and B, and a
central one, C. The terminal moieties are linked to the central
one by 1 edges each, 1 =2, 3, 4. The model 2(1 = 4) is showm

in Fig.1.

Fig.1.
Now we give the definition of the 33..T5 and the SA'TA'15°‘

mers, We restrict ourselves to the cases of benzenoid system.



Suppose that the two terminal subunits arising in the
model 2(1 = 4) are isomorphic, i.e.: 4 = B. For convenience, we
shall always use the symbol A' instead of B. Let C be a central
subunit consisting of four wvertices a, b, ¢, d. Let %, v, 2, w
be four vertices of A and x', y', z', w' four vertices of A'
corresponding to the x, y, z, w seperately. Conjugated system
SB(TB) is obtained from the S(T) by joining b to c¢.(See Fig.2.,)
Thegse two conjugated systems: are called SB,TS—isomers.

Furthermore, Sh(Th) isomer is obtained from the SB(TS) by
removing edge bc and joining a, ¢ to b, d respectively, {See

Fig.3.)




It 15 not difficult to see that for the 3,T-isomers of the
model 2(1 = 4) having two identical terminal subunits, if we
restrict ourselves to the cases of benzenoid system, then only
the Sj’Tﬁ and the Sa,Ta-isomers are possible,.

For convenience, the hexagons of the 33(T5) intersecting
the vertices a, b, ¢, d are labelled by 1, 2, 3, 4.(3ee Fig.2)
The subgraph of Si(TB) consisting of these four hexagons will
be denoted by H. Denote the number of Kekulé structures of Sz
(TB) by K(SE)(K(Ti)) and the number of aromatic 7{ sextets( in a
Clar formula) of Sj(TB) by G(Sj)(d(Tj)), respectively, Let P
denote the set {a,b,c,d} and n(A) the number of vertices of A.
The terminology nct defined here is taken from [7]. Vertices
removed from a graph will be denoted by an upper index; i.g.:
the graph A - {x,y} will be denoted by Axy. If m is a matching
of H that saturates the vertices of P, then the number of
Kekulé structures of SB(TB) in which the vertices of P are sa-
turated by way of m will he denoted by Km(sj)(Km(Ti))' Clearly,
K(S3) =2 K (S5), K(T3) = K (T4), where the summation is
over those matchings m which saturate the vertices of P.
Theorem 1. For any pair of SB,TB-isomers,if n(A) is even then

K(S3) £ K(T4). (1)
Proof. If n(A) is even, then the number of matchings of H which
saturate the vertices of P is ten; we denote them by mi(i =1,
2,+4+,10) as shown in Fig.4. For convenience, we only draw the
subgraph H oﬂ‘SB(TB).

Clearly, Km1(35) = K(A™) K(A') = K(A™).K(A) = Km1(T3)-

After some simple calculation, we have K (33) = K, (Tj),
i 1
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A glance at Fig,2 and Fig.4 shows that

Ky (85) = KT)R(AT) = k(W) k(a");
Ky (55) = K(AY")ek(arX"2) = k(#%%)ek(a¥¥);

K, (35) = K(A™)-R(a ™YY = k(aZ¥)ek(a™F);

9

Ky, (55 = KD R(a ) < k(a2 k(a5
Ky (T5) = KW k(a 7"y = k™)
KEB(TB) - K(AY")k(arY' ™'y o [K(Ayw)]Z;
Kyg(T5) = K(AZ).k(ar='™Y") = [K(AZ"’)]Z;

1yt 2

Ky (T3) = K(A)ek(a®7"y = [k(a)] .
0
Therefore,

1 6
BlEg) = E%Km.(sa) = 2Ky (85) + KA K(AT)
&s®m, :
+ 2K(AZW)-K(A™Y);
10 6 2
K(T5) = %;?Kmi(TB) = ?E%Kmi(s3) + [k(a*®)] "+

B, 2 2
+ Y] « [®™ ] + ],
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From the expression of K(SB) and K(Tj), it is easy to see
that the inequality (1) holds.

Now we discuss the number of Clar formulas of Sj,Ts—iso-
mers. Let 5(A*Y) be the maximum number of circles which can be
drawn in A*Y with the rules (a) and (b). (Note that the A*Y need
not be a benzenoid system.) Let m; be a matching of H (see Fig.
4,), then the maximum number of circles which can be drawn in
Sy - P(T3 - P) with the rules (a) and (b) will be denoted by
Gﬁi(SB)(G;i(TE)) when the vertices of P are saturated by way of
my .

Theorem 2. For any pair of Sﬁ,Tj-isomers, if n(A) is even then
G(s5) < 6(15)- (2)
Proof. The following three cases need to be considered.
Case 1, There exists a Clar formula of 33 which has no sex-

tets in H. Obviously, in this case, G(Sj) = max,Gm (33)' if
i i

B, (T3 = 6(A™) « 6(a) =G, (55), we have (1) ) Gy, (15) =

(33), namely 6{33) = 0(A™) + 6(4), then, since

=6, (s5) = 6(s5). The inequality (2) holds.

1

It is easy to check that Smi(S}) =’Gml(T3)v i= ‘la 2| 39 ""'
5, 6, therefore, if G(s;) =0, (s5)y 1 =1, 2, 3, 4 5, 6, then

1

G (554 6(Ty).

Suppose that G(Sj) = Sh (53), namely, GISB) = §(a%2%) +

7

+ 8™, 15 B6(a*) » G(A™) then G(T5) > Gm7(T}) = G(a*®) +



+ GarX"27y = 26(a%%) 3 6(A*%) » 6(a¥) = G(s5)5 if 6(a™) <
¢ G(aY™) then G(15) 3 By, (T5) = BCAY™) + GarY™'y = 26(a¥) 3
> G(aT) + G(A**) = G(s5). Thus, when ((s4) = Gm7(53), the in-

equality (2) holds.
If'G(SB) = Gm (53), j=28,9, 10, then in the same way as
J

for the case G(Sj) = Gm (33),., one can get the inequality (2),
7

Case 2, There is a Clar formula of S3 which has only one
sextet in H. We consider four subcases as follows:
1) The sextet is in hexagon 1. There are two ways to saturate
the rest vertices of P, as shown in the following graphs:
(1)
From Fig.2, we have G(SB) = anYZ") +
@.O + 6(a*) + 1. Obviously, Ty has a Clar
. formula in which the number of sextets is
GUA®) 4+ B(aY) + 1, thus, ((S5)L06(Ts).
(11)
. In this case, one can get the result in
@.Q the same way as shown in (i),
2) The sextet is in hexagon 2. It has two ways to saturate

the rest vertices of P, as drawn in the following graphs:

(1)

w oy We have G(s5) = G(a7Y2"Y) 4 ((a) + 1.
From Fig.2, it is clear that there is a
. Clar formula of T3 in which the number of

sextets is G'(Axyzwuv) + G(A) + 1, thus,
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the inequality (2) holds.
(ii)

In the same way as the proof of (i), one can
get the inequality (2).
3) The sextet is in hexagon 3. It has two ways to saturate

the rest vertices of P as follows:
O

In a fully analogous manner as for subcase 1), one can get
the result (2).

4) The sextet is in hexagon 4. This subcase is fully equi-
valent to subcase 2).

Case 3, There is a Clar formulas which has two sextets in

. H. In this case, it is elear that 6(53) =
@.@ = G(TB) = 2G(A*Y2Yy 4 2. Hence, the
inequality (2) holds.

The proof is thus completed.

Now we disc‘%ﬂ the case when n(A) is odd. Let S3 be given,
n{A) is odd. Suppose that we put 33 in such a positiom that the
edge xy is horizontal. Following (8], we call the 2-degree ver-
tices those of the form.< ( >+ ) the peaks(valleys) of E;3 and
denote the number of peaks(valleys) of S3 by P(SB)(V(SB))'
Theorem 3. For any 33-isomer, if n(A) is odd them K(SB) = 0.
Proof. Denote the number of peaks and valleys of a benzenoid
system B by P(B) and V(B), respectively. For any two-coloring
of B, P(B) - V(B) is equal to the difference of the number of



differently colored vertices. Hence, if n(A) is odd, then

P(A) - V(A) = 2k+1, where k is an integer. Bearing in mind the

construction of Sy 1t follows that P(Si) - V(SB) = L4k+2. Con-

sequently, P(SS) # V(SE)’ which immediately implies(see [B))

the nomexistence of Kekulé structures of Sz.
The proof is completed.

Remark: when n(A) is odd, K(T3) > 0 may hold, see Fig.5.

&
S0
W
83 TB
Fig.5
Summarizing the above theorems, we have
Theorem 4., For any pair of 53,T3—isomers, G(Si){.GITj),
K(S5) £ K(T5).
Lastly, we give the following
Theorem 5. For any pair of'sh,TL-isomers, we have the following
results:
1) 8(s,) € 6(Ty), K(S,)¢ K(T,);
2) if n(A) is odd, then K(SL}) = Q..

The proof is analogous to those of the theorems 1-=4,
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