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ABSTRACT

In the work presented here the metric properties of granhs
are studied. For a graph the relative partitions are introduced
and on this basis the graph layer matrix of the order n is de-
fined (at n = 1 the graph layer matrixcoincides with a distance
degree secquence), which is a basis for the calculation of va-
rious characteristics of a granh. For studying the nath properties
the nath laver matrix of a granh is defined (or the path degrce
sequence). The concept of the graph isotonicity is introduced
and the graph isotopicity criterion is given. The properties of
a vertex set whose deletion does not influence the metric nropner

ties of the remaining vertices are censidered.

A study of metric pronertics of granhs and their use in the
chemical research is an important direction in applications of
mathematics in chemistry. Metric properties provide the wide
possibilitics for describing structural features of molecular
graphs. Widely known are the tonological molecular indices []J
which are used in the studies of the vrohlem for establishing
the "structure-property" relationship. A formal representation
of metric properties in the form eof either indices or other

characteristics can also be useful in the field of sciences ad-
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jacent to chemistry. At present, one can not say that there is
either general approach or a theory for defining or calculating

the topological characteristics of molecular structures. A

theory of graphs enables one to carry out a systematic study

of fundamental properties of graphs and also to consider a set

of structural characteristics, the use of which will facilitate

the development of a more substantiated system for the descrip-
tion of the structural properties of molecules.

In the work presented here some problems of metric analysis

of graphs are considered. The metric analysis of graphs is assumed
to be a combination of the metheds, algorithms and their computer
realization.These mathematical means are used for investigation of
various problems as a study of metric properties of graphs, the cons-
truction of molecular topological indices, a study of variations in
values of indices at local transformations in the molecule structure,
defining ways of evaluation of the relative position of fragments
in the molecule, etc. In addition, the metric properties of graphs
are used for accelerating the calculations in the solutions of such
complicated problems as, for example, finding the maximal common
parts in graphs, etc. Onec should note that together with the natu-
ral metric of graph based on a distance as the shortest path con-
necting a pair of verticies , and search for other approaches for
the definition of the graphs distances that will enable one to
investigate important notions of the similarity in molecular structure
The graph properties based on the distance and path distance between
the graph verticics are considered herc. The metric propertics

of graphs arc baseld on the notions of the reclative partition and
graph layer matrix (2] . In particular., in terms of layer matrix

the condition of graph isometricity is formed [7] . Also consi -
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dered are the usce of metric characteristics for defining the
relative positions of subgraphs in a graph, a set of vertices
of graph is described whose deletion does not change the distan-
ces between the remaining vertices.

The work presented here contains a review and some original
results obtained at the Institute of Mathematics of the Siberian
Division of the USSR Academy of Sciences, Novosibirsk. For the
sake of the work unity the references are given and other results
are mentioned as considered approvriate. It is worth to note that
the work is not an exhaustive review of the studies nerformed
in the field of the granh metric vnroperties. Its main purpose 1is
to make the readers aquainted with some problems of the graphs

metric analysis.
I. RELATIVE PARTITION AND GRAPH LAYER MATRIX

Let G(V,X) be the finite undirected connected graph with-
out loops and multiple edges, V(G) 1is the vertex set of the graph
G, |V(GH=P ,|X(G)|=q/ . The distance Q(U,U) between vertices
u,ur € V(G} is assumed to be the length of the shortest path
connecting W and U . If VoSV(G), then a distance between UreV(G)
and a set Vo is a minimal distance between U and vertices from
Vo in graph G . Let VL(Vo) be a set of vertices of graph G
located at a distance L from Yo
DEEINITION 1 [2]. A relative partition of graph G with respect

to Vo € V(G) is called an ordered partition

BNV (Vo) 1§20,4,2,..., KVp), €V (Vo & A, Vo) = §, ViV =0

with i#} . A sct of vertices VL(VQ) will be called an L -th
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layer of partition and K(Vo) as a length of partition.

Fig. 1 shows a relative martition of the graph G with
respect to Vo={u,u} . Let us consider a set of all the
relative partitions of the graph GG with respect to the subsets
V(G) of the order M using these partitions one should put in-
to correspondence of the graph G the layer matrix of the order
of M .

DEFINITION 2 [2]. As a layer matrix of the order TL of the granh
G is called a matrix A= }LJ" . L=1,2,...,(IP1) 5

j=1,2,.", d(GJ , where Ai} is equal to the number of vertices
in the J -th layer of a relative partition with respect to the

L -th set of the order n,d-(G) is a diameter of graph G .

By ordering the lines Xn(G) with the decrease of a length
(the number of nonzeroth elements) and then by lexicogranhic or-
dering the lines of the same length one can obtain a canonic
layer matrix ).n(G-) . With TL = 1 one can obtain a layer matrix
A(G) for the single vertex partition of graph & . For further
use we take that )\(G’) has always its canonic form. In the ana-
logy of the vertex layer matrix An(GJ one can consider an edge
layer matrix }q;(GJ where the } -th component in a line cor-
resnonding to some relative partition is a valuc of the cut be-
tween the layersvug and\ﬁ, of this partition that is equal to
the number of edges between the layers V}-x and V} . The com-
plete graph layer matrix is represcnted in the form A'I(V,X):
()\n(G),AT;(G)) . Fig. 2 shows the matrices A(G) and }\X(G)
of graph G v

Let the layer matrices.be represented in the lincar form.
For the graph in Fig. 2 A(G)=|l1(2,1,1)s 2(1,2,1); 3,4,5(3, 1,00

or if the vertex numbers arc not necessary, a multiplicity of
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the similar lines is only indicated A(G)=l|(2,l,l]; (1,2,1);
3#3,1,00l . In a slightly changed form A(G) is called a dis-
tance degree sequence of a graph that for the graph in Fig.2

has the following form DDS(G)=¢( (2,1,1), (1,2,1),(3,1,0)"')[3].

Let us show some simple properties of the layer matrix
AG) [2,4].

1. Let AG(U') be the matrix A(G’] line corresponding to
the partition a(lf) . The line length is then equal to €(U)
that is the matrix line lengths form the eccentric sequence of
graph G .

- 2. Let AG(U) be the the i -th line of A(G) . Then
&[ZA-L}=P‘1 A0, dejcew),

3. At least two first lines of the canonic layer matrix
have a length of a graph diameter. The last line length is equal
to the radius of a graph.

First column A(G) is the graph degree sequence,

4.
% )\f_1=2q/.

-

5. A layer matrix is connected with a distance matrix in
the following way - the matrix element A'—J is equal te the number
of elements being equal to J in the line of the distance matrix
for the vertex {

6. bFrom an equality of matrices of the second order docs
not follow an cquality of the laver matrices of the first order.
In fact, )li(Ku'lT)‘”')\z(K.,) s AKy-0) # A (KL

Irom the equality of the laver matrices A(G)=)\(H)

does not follow that G’:H . Figs. 3a,b show the examples of
nonisomorphic trecs [3,5]‘ and Tig. 3,c - the examples of non-

isomornhic granhsiwith an identity automorphism grount with the
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same laycr matrices.

§. An equality of the complete layer matrices AG(V,X)=}H(V'X)
dees not provide that G'L’H . Fig. 4 shows nonisomorphic graphs
with the same complete layer matrices. The same property is
posessed, for example, by Moore's graphs having the same order
and degiee of vertices.

9. From the pair coincidence of the vertex layer matrices
of the same order for the whole family of matrices )\n(G) s =l 2 00
an isomorphism of graphs does not come. Fig.5 shows nonisomorphic
graphs G and H for which /\L(G-)‘—“X'(H) is valid for 4 ¢L €Y
In fact, A*(G)=A"(HY= | 3-(2,2); 2-(3, )] , AN(G)=AT(H)=
I 32,05 7=, A& XM= o=@, A%(G)= A (H)=
=ls-ml .

10. There arc not only single examples but also classes of
granhs that are not defined unambiguously by their layer matrices.
Such a class of graphs, for example, forms regular graphs as G
and H of a degree 1 and diameter two for which the following
condition is valid A(GF)\(H)=I|P-(7,P-’Z-i)ll.

11. There are nonisomorphic graphs G and H for which the
following condition is satisfied XZ(Vyx) = AlH (V,X)

12. There arc nonisomorphic graphs G and H for which
l(G‘{TL)=?\(H'u"_) is valid for all | =1,2,.,p and A(GF)(H)
where graph G‘U is obtained from granh G by the deleting ver-
tex & and all the edges incident to IF

13, It is interesting to define nonisomorphic graphs G ana
H such as the condition A(G‘V,")=)\(H‘ui) is wvalid for all
L= ,2...,p but X(G)?*Q\(H) .

14, In reference [5] the conditions are considered under

which the integer number matrix A given will be the layer matrix
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of some tree and an algorithm was suggested for the construction
of trees having the same layer matrix as A Note, that in addi-
tion to the simplest relations between the layer matrix clements,
the graphic condition should be satisfied both for the degree
sequence of a graph (first column of layer matrix) and for its
eccentricity sequence which is formed by the lengths of the

layer matrix lines.
2. ISOMETRICITY OF GRAPHS

The isometric graphs are defined and some properties of
graphs are considered in Ref. [6]. The relation of isometricity
in the class of equivalence on the metric properties of graphs
is analogous to the relation of isomorphism on the set of graphs.
The necessary and sufficient conditions are established in Ref.[7]
for the isometricity which give a simple with resmect to calcu-
lation and constructive criterion for establishing an isometri-
city of graphs.

DEFINITION 3 fT] £~snectrum of granh G is called a matrix
Q(G) which consists of all the mutually different pairs of
lines of the layer matrix A (G).

The matrix B(G-) has a canonic form similar to that of ma-
trix A(G). The number of lines in E(G’) is denoted as ‘E(GH
Apparently, the graph, for which the condition E(G)=)l(c') is
valid, has the only identity automorphism. If P,(G) consists
of one line, \[(G‘)l = 1, then all the vertices of graph are
metrically equivalent. In Rof.[33 the graphs with t(G) =}\(G)
and 12_((})\"1 are called the graphs with injective and rec-
gular distance degree sequences. Let graphs G and H have the

same order.
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DEFINITION 4 [6]. Granh H is isometric from granh G, G~H,
if for cvery vertex U'EV(G’) one can define a one-to-one
correspondence of V(G’) to V(H) (PLYV(G) = V(H)  such that
tor any ueV(G)  do,u) = d, (9, (0,9, u),

Graphs G and H arc called isometric, if G~H and H™G
which is denoted as G®*H . The isometricity and ¢ -spectra are
related as follows.

tHEoreM 1 [7]. GerH = L(G)=E(H).

Thus, E -smectra ol graphs characterize completely the isometric
graphs. Note, that isometric graphs can have different layer
matrices. Fig. b6 shows nonisomorphic isometric granhs for which:
UGt =11(3,1); 2,21 and A(B)=112,3,4,5(5,1); 12,0,
AHY= 12,3 (3,1) 5 4,4,5(2,2) I

Correspondences \Plr nroduce the permutations on the vertex
set of granhs G and H conserving the property of isometricity.
Such permutations will be called the isometricity permutations of
graphs G and H . A set of all the permutations denote as
IZ(GiH) . In order to define all the isometricitv permutations
it is sufficient to consider all the single vertex relative par-
titions. Let G ,G(U-) be relative partitions and lines lq(u')
and J\H(U-) in the layer matrices be the same, then for the lav-
ers V(W) and Vi(w) , 04L ¢€W) relation P (Vi(r))= Vi (W
is satisfied where for Ue V(G) the value of ‘{’V(U) is defined as
P (V) = & Folw).

The total number of the isometricitv permutations for graphs

G and H is given by the formula

Ki
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where Qi (G), Qi {H) is the value of multiplicity for { -th
line Q(G} in the layer matrices A(G) and A(H) respectively,
Ei’i - the value of }~th element of { -th line E(G) , Ki is a
length of L -th line. For graphs given in Fig.6 | Te(G,H)I=60 .
Tt is evident that an arbitrary graph is isometric to itself. In
this case, the isometricity permutation will be called the auto-
metricity permutation. The number of such permutations is deter-
mined by the svectrum E(CT) . The total number of autometricity

permutations is
161 Ki
1A[(G)l=% 2 : GL(Qi'Pﬂ.) ﬂj,t"t}l- -
=1 i
The value of lA(lG)I takes its minimum when all the laver ma-

trix lines A(G) are different i.c. at f-(G')=j\(G) . In this

8GN K

case,[Ap(G)j=7 N ff;' |Al(G)| takes its maximum value on
(=4 ji=4 .

the graphs wherdé 1£(@d1=4 . In this case {Ap ()] =

d(G)
- L i dG) i i
2P([)+1) n [‘JI . where d(G) is a diameter of granh G .
Jfﬂ.
3. LAYER MATRIX AND METRTC CHARACTERISTICS OF GRAPHS

Many properties of graphs are determined by the shortest
distances betwcen 1ts vertices. Based on a distance concent
d[u’_’(y’) u,U’EV(G) are the granh metric characteristics as
the functions of the granh parameters and the distances between
its vertices. Among the metric characteristics one can distinguish
two classes as the eccentric and distance characteristics [4].

3.1 LCCENTRIC CHARACTERISTICS

This class of graph characteristics is based on the concept

of the vertex cccentricity. Some eccentric characteristics arc gi-

ven in Table 1. Depending on the values of graph characteristics
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Table 1

No Designation Name Expressions for calculation
Vertex eccentri-
1
ew) city [8] ew)y=maz d(u,o)
ueV(G)
"L(G) Radius of a
2 goapts T4l UG)=min ew)
re V(@)
d Graph diameter
3 (G) Bs] d(G)=max e(v)
weV(G)
Eccentricity of
{ €(G) | graph [4] e(&®)=) _ ew
reV(G)
Average vertex
2 em, (@) eccentricity in em,(G)=%5 e(@)
graph [4]
AE(U) Eccentric of AE(U)=ie(U’)~ euv(G)l
6 aew) vertex E4J Bew)-= (W) -Eay(G)
Eccentric of
nG

graph [4]

aAG =% Z: A er)
reV(G)




Table 2

No Designatio& Name Expressions for calculation
1 2 3 4
Distance of a
7 D) vertex [9] (ver- D)= Z d,(l)‘,u.)
tex centrality weV(G)
[10])
Distance of a
2| D(G) |wash 9] Graph | DGY=3 ¥ Do)
integration [107) veV(§)
Minimal distance
5 D*(U) of a graph [4] D*(G.): min D(v)
{unipolarity [10]1) reVv(q)
Distance vertex 5
AD*([)') deviaticn from its aD )= D(U’)-D*(G—)
: minimum [4]
Variation of a o
5| var(G) | araph [4] raz(G)= max aD (v)
ve V(G)
Distance graph de- .
6| AG* viation [4] (cen- QG*=£,5\D*(U')=2D(G)'PD (&)
tralization [10]) reV(G)
Average distance ZD(G.\I
7 Dm,(G) of graph vertices DuU(G)z P
£a)
aD(m) Distance vertex AD(U’)le(U)_Dau(GH
3 deviation from _
AD(W) average [4] ADW)= D -Dey(6)
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Table 2 (continucd)

1 2 3 4
Mean distance de-
9 A D(G) viation of a graph AD(G) = _Z AD(U)
(4] Previe)
Mean deviation
10 m,(r) | of a graph ver- m, ()= i D)
tex [11] I
Mean square de- g
11 mz(u-) viation of a graph m, (‘”‘EZ [d(u,tr)}a
vertex [11] ueVq)
. Graph disper-
12| m : mM, ()= min m,(v)
2 (Q) sion [11] 2 rEV(G)
-4 Converse distance i 1
131 Do) of a vertex [4] D (r D)
D-i(G) Converse distance D (G)=
14 of a graph [4] D@G)
.- Converse minimal
15 D (G) distance [4] D (G)- max D (l}')
veV(q
Converse centrali- L(G)=Z(D*-’(.G)-D-1(V)) =
16 L'(G) zation [4] UEV(G)
-PD (G) 2D (G)
Compactness of a G)= Z- d(U. U)
17 F(G) graph (mean dis- ( )UU’EV(G)
D(G)

tance [12]

P(P 1) ©
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one can scparate in the graph some certain vertex sets and res-
pectively induced subgraphs. Such nonnumerical characteristics
will be called the granh constructions. The well known graph
constructions are the following - center of a graph is a set
vertices UeV(G) for which the relation €(U)=T(G) is valid,
graph periphery is a set of UE V(G) for which @(U)= d_(G—)
is valid and others.

3.2 DISTANCE CHARACTERISTICS

This class of characteristics is based on the concept of
the graph vertex distance. Some distance characteristics are gi-
ven in Table 2.The constructions of a graph include such as a me-
dian of graph that assumes a set of U€V{(G) for which the rela-
tion D(v)= D*(G) is valid, the graph center of gravity assum-
ing a set of UVEV(G) with mz(v)=m;((}) satisfied and
others.

Metric characteristics of graphs have been studied in many
papers with major attention paid to obtaining the upper and lower
bounds for the graph distance D{G) , graph compactness f’!((})
etc. A bibliography of 37 papers on the subjects is given in
Ref.[131.

3.3 LAYER MATRIX AND METRIC CHARACTERISTICS CALCULATIONS

The use of the layer matrix of graph A((}) enables one to
utilize a unified method for calculation of metric characteristics.
A function calculable on matrix A((}} let us call the A -calcu-
lable. From the matrix promerties if comes immediately that the
line length is equal to the cccentricity of corresponding vertex.
The first linc length is equal to the diamcter value and the latter-
to radius of the graph. Thus, the eccentricity characteristics are

)\-czllculahle. Since the distance characteristics are calculated



- 124 =

through the vertex distances, their A -calculability follows
from the A -calculability of [(u), reV(G).
Let vertex U in matrix )\(G) correspond to the L -th line,

e

then, )
Div) =3 _ j Ay

§=2
This formula can be used both for direct calculation and also for
obtaining analytic exnressions for metric characteristics of
graphs. Let us give some examples. lLet CP be a simple cycle of

the order p , then if P is even, )\(CP)"-“P'(Z,Z,...!2,1)" and

D(CP)=18-P3 , if P s odd,A(CP)=Il P'(Z.z,..“.)_f)a’%ﬁi and
(P-9r2
D(CP)= %(Pz'l)P o KP is a complete graph of the order

p . then  A(Kp)=lp-(p-nll and  D(Kp)=Fpep-1)

For the complete bipartite graph Ky, o, )\(Kmm)ﬂlmv(n,m-i);
n-(m,m-1)  whence D(Km p)=nm+nm-1+mom-1) .
The characteristics can be calculated by the spectrum E(G-)

Such characteristics called as [—sncctral are uscd for studies

of the symmetry nroperties of graphs determined by the isometri-
city relation by the comparison of characteristics obtained with
E(G) and A(G) . In Ref. [14} the granh comnlexity function is

considered for

= ,.E&. l... 1
8(G) 5+3, ?: g .
4,
L}
where 'J‘(L,J) is the number of various paths from the vertex
l to} . It is indicated that E(G) has the following nroner-
tics: monotonically increases both with number of vertices and

edges of a graph; displays the graph connectivity degree; cor

responds to the intuitional concent of complexity by matching



large numbers to graphs which "look" as complex and vice versa.
Let us show that E(G) is not a A -calculable. In fact, for the
graphs given in Fig. 7 A(G)= AH) - N z-z,2,1); 3-(3,2)0,
but E(Gr)f-g(H) since E(G) = 2060.2 and E(H) = 274.3.

4. PATH LAYER MATRIX AND PATH CHARACTERISTICS OIF GRAPHS

One can obtain somc interesting vroperties of graphs by
studying sets of paths of graphs. A path connecting vertices
UA,UKEV(G) is called a sequence of the pair mutually differ-
ent vertices Uy Uy ... Uy, Uy o, (07,05, VEX(G) i=4,2, ., K1,

The length of the longest path connecting vertices W ,U0 € V(@) is called an

elongation ehu,u—) between the vertices [11]. The maximum elongation value

for the graph vertices is called the granh elongation diameter.

DEFINITION 5 [15]. The sum of lengths of all the possible paths
connecting vertices W and U is called a path distance P(U,U')
between vertices W,0 € V(G).

Analogous to the layer matrix X(G) 1let us define the path
layer matrix for the graph T(G).

DEETNITION 6 [16]. The matrix T(G}= |ITLJ, N, i=4,2,...,p
}=1'2,'__, dt(G) , where’t;} is the number of various paths of
a length * coming from L -th vertex, dt(G) is an elongation
diameter ( is called the path layer matrix of graph G .

The length of a line corresponding to { -th vertex let us
call such a maximum value of J, that 'C(,}fo . The canonic form
of a matrix T(GF) and its representation in lincar form is de-
fined similarly to that of the layer matrix A(G) . Fig. 8 shows

the granh and its matrices X(G) and T(G) . 1f G is a tree,
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then ’C{G)=)\(G—) since any two vertices of a trce are connected
by the unique path. Matrix T(G) contains more complete informa-
tion on graph than A(G) . vor graphs given in Fig. 5 the layer
matrices of any order are the same, but

T(G)
T(H)

In Ref.[3] matrix T(G) is considered as the path degree sequence

I

lcz,4,4,4); 2-(2,3,5,3); 2+(3,4,2,00| ,
3-(2,4,4,4); 2-(3,3,4,0.

of the granh PDS (G). For some granhs the layer matrix can be
given in explicit form. For example, for the complete graph KP
the path layer matrix has the form TX](P)=I1P~(p‘i »(P-OUp-2),
(P-l)(p-z)(P-3),‘_" (P-i)!) I, for acycle of the order P

T(Cp)=llp-(2,2,...,2) 11 or the complete bipartite graph Km,n

pa
TKmn)2 e (a0, 000y e (B B, L B
where

m!  _(n-! " 0dd
7
p_d (m-B (-4
* ml " (Tl'i)‘. 4 A even

(m-F) (n-122))

The values for a, are obtained from the exprecssion for 51
by mutual exchange of values M and 0 . 1If M<N then K=2m-1,
t=2m and with nem  k=2m,t=2n-1,

Let us consider the uniquness of presentation of granhs with
the path layer matrices. In Ref. [16] is shown that an equality
of the path layer matrices for the graphs of the order not in ac-
cess of 11 is the condition sufficient for their isomorphism. Tn
Ref.[2] an example has been given of nonisomorphic trees of the
order 23 having the same path layer matrices (Fig. 3a) and in

Ref.[s] the trees are given which apparently have the smallest
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order (Fig. 3b). Ref.[]fl presents a pfoccdure for constructing
such trees. Ref.[15] indicates that nonisomorphic graphs with the
same layer matrices including the given graph G as a subgraph
can be obtained with the method examplidied in Fig. 9. Ref.[18]
studies possible values of girth and cyclic rank for similar graphs.
The length of the smallest cycle is called a graph girth. The
value of ]5=q,‘P+i is called a cyclic rank of the connected
graph. The value f> is also interpreted as the number of indevend-
ent cycles in a graph. In Ref.[18] the following assumption is
formulated:

The lowest order for which there is a pair of nonisomorphic
connected graphs having similar path layer matrices is equal to

(1) 16 + 9 if the graoh girth is g
(2) 16 +[3*';1*3 ] if graphs have f independent cycles, rsi

denotes the minimal integer larger or equal to §

Fig. 10 shows pairs of nonisomorphic graphs satisfying the
conditions of the assumption. To the assumption given above let
us give a negative answer. Actually, graphs shown in Fig. 11 hav-
ing the order P = 18, girth 3, = 4 and cyclic rank 13 = 2 are the
counter expamples for the assumption. The path layer matrix for
these graphs has the form T =| 15,16 (1,3,6,11,14,7,6,2);
1 (1,2,7,12,12,10,6,2): 2 (1255032 16410,6,2); 17,3801,2,4,8,
10,8,8,2) 5,401,1,4,9,10, 8,8:20 5 Tl (4:6,11,14,7%,6,2);
5 (3,7,12,12,10,6,2); 6 (3,5,12,16,10,6,2); 12(3,4,8,10,8,8,2
13 (2,6,13,14,13,6,2); 8,7 (2,4,9,10,8,8,2); 14 (1,;4,10,10,8,8,2):
9,10 (5,10,10,8,8,2)"

Graphs given in Fig. 12 are also the counter examnles foar whe
assumption. The order of graphs is P = 18, girth %, = 4 and cyclic

rankJ5 = 4. The path layer matrix has now the form T =



Fig. 9

P indenendent cycles

n i {5
5 g L 5 g 16
'] 13 11
26 R 3%
4] 13 4 42 14 G 2
18 ! 10 s 1% 10 8 ®y
16 17 17
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=f15,16,17,18(1,3,6,13,22,21,24,14,6); 1,4(1,2,7,14,20,24,24,18,4);
2,3(1,2,5,14,24,24,24,18,8); 11,12(4,6,13,22,21,24,14,6);
5,8(3,7,14,20,24,24,18,4); 6,7(3,5,14,24,24,24,18,8); 13,14(2,6,
15,2228, 28,22,6)5 9,2005,12,76, 16,24 ,.32) |l..
These examples of graphs are obtained from the trees in
Fig. 3b. And again as previously we do not know anything of graphs
with the same vath layer matrices which are not obtained with

any method from the trees with the same layer matrices.
5. PATH CHARACTERISTICS OF GRAPHS

For graphs one can define a class of characteristics based
on the consideration of the graph nath sets. Such characteristics
will be called the nath characteristics. The nath characteristics
are divided into two classes: the elongation characteristics and
T -distance characteristics.

The elongation characteristics are based on the concept of
elongation between two graph vertices ER(u,U’) u,reVi(G)

Such graph characteristics as the radius and diameter of eclonga-
tion are known [11]. The value et(u)=ﬂ\%)ehu,w we shall

call the path eccentricity of vertex  U€V(G). Since d_(u,u)s
5et(u,0’)$ P-i it is evident that €(U)<€¢ ()¢ P-4 . Using
Er(lr) in place of €(r) onc can define the set of eclongation
characteristics corresponding to the eccentricity characteristics.

The calss of the T -distance characteristics is based on the
concept of the path distance in a graph. Similar to that as the
distance characteristics are constructed with the usc of D),

re V(Q) , T -distance characteristics are constructed on the



- 126 -

base of the T -distance vertices D_{U)= l\:\'__(G)P(u,U')

re V(G) .The use of the path characteristics enables one to
get the more complete information on the graph structure compar-
ed to the metric characteristics.

The path characteristics are € -calculable. From the proper-
ties of T(G) immediately follows that the line length in
T(G)is equal to the elongation number of the corresponding vertex.
The length of no less than two first lines is equal to the granh
elongation diameter, the latter line length is equal to the graph
elongation radius. Thus all the characterisitcs are T -calculable.
The vertex distances are also calculable. If in T(G) éo the
vertex F€ V(G)  corresponds { -th line, then Dt(U')= %)}-TQ
Knowing the evident form of T{G) one can obtain formulas for
values of T -characteristics. For example, since Dt(G’) =

15: D (¢) , then by the given above values of T(Cp) ,T(Kp)
treV(G-

P-1
we obtain DT(CP):'%PZZJ = jiP'l(P‘i) = DT(KP) =
i

-4
L PLp-0* 2(p-1)(p-2)+.. .+ (p-0)(p- -1 = ppp-n! Z.' (E,*%__m

A graph complexity function g(G) is the T -calculable.
Actually, through the components ti.J‘. of matrix T(G) the func-

tion ;((_“.) is expressed in the following form:

Pg P €c(0
5@ %yirg) - i_Z Ty(G) .
By this formula we obtain the values of g((_}) for graphs KP

CP and for a tree TP of the order p . One has



Py ¢ & p & & 1 ut
il =L = L p'(p-1
2Cp) " 2p z.%;iﬂfl}(ci’) I ?;H’" RO R
p e P e il
PPy pe-yy & pip-n)
E(Tp) = 2 p-1 2 L;}; i} (Tp) 22 p-1) -LZ%(P 2(2p-1)
PP
_ Pp-a) - P(p-1)
§0Kp)= Torn) :?i_: }=1L.‘_}(KP) TprD) PL(P-D+(p-1I(p-2) +..
p-2

pPip-» s« (p-!  _ppa 'y i
(p-1)]= AP rD) g__; TEw 2(p+1) (p-1)! Z P!

The values obtained coincide with the values E(G—) for the in-
dicated graphs given in Ref.[ld]. Knowing the evident form of
g(G) one can see how the values are connected with the path

and metric characteristics. For example, for CP g(CP): D'C(CP)

and

Li{p-1)
D(CF)——E’)—i—- 5 P even

D(Cp) _:‘E' , P odd
Note that if T(G)=T(H) . then E(G)‘,’S(H) , but inversely
it does not hold. In TFig. 13 one can find that for graphs G and
H E(G)= 3(H) , but T(G)? T(H). For these gravhs §(G)= & (H)=

= 26676 and the first lines of matrices T(&) and 'E(H) have

the form T, (G) = (4,12,34,70,142,254,300,156}, 'ti(H) # s,
32,74,152,258,294,164) .

6. ISOTOPICTTY OF GRAPHS

Let us consider the question of the existence of a graph



- 128 -

correspondence which conserves the path distance between the
graph vertices.

The path distribution for the vertices W,U€ V(G) of a
graph G of the order p we shall call a sequence &(U,b0) =
(0\114.,_,,,_,,{?_1) , where o; is the number of paths of a length
L conrecting vertices W and U . The path distance between W
and ¥ can be represented in the form pP(u,r)= Z'_td.
DEFINITION 7.[15) The grap]TFs isotopic from the gr'aph G,G=H,
if for every vertex r€V(G) there is a one-to-one correspondence
V(G’) upon V(H) ‘PVZV(G)‘?V(H) such that for any WE V(G’)
the equality dig (U,WU)= d-H(“Pu_(U'),‘PU,(u)) is satisfied.

The graphs G and H are isotopic, G2 H y: 3% G=2yH and
H2>G . The conservation of the path distribution in the iso-
topic graphs causes the conservation both of the path distance
between the vertices and other distances based on the path dis-
tribution of vertices.

Let us associate the vertex U3€ V(G) with the square

matrix of the order p-1

A (v7,00)

. .

IR | LN G A
ROD= N 0] e

oL(u;,trP)
The matrix R(V{) will be given in the same canonic form
similar to that as for the path layer matrix T(G) .
DEFINITION [15]. The set of paired different matrices from the
set [R(U’)} UeV(G) is called the s -spectrum of the graph G.
’

1f for any matrix from 5(G) there is the same matrix in
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S(H) and vice versa, we shall say that the S -spectra of graphs
coinside  S(G)=S(H)

THEOREM 2 [15]. G €= H & s(G)=s(H).

For the trees the isotopicity concept is equivalent to
isometricity.

COROLLARY. If G and H are the trees, then G&PH & G H.
In the general case this statement is not valid. The
graphs given in Fig. 5 have the same layer matrices of all orders
but they are not isotopic. The coincidence of the sets of the
paired different lines in the path layer matrices is only the
necessary condition for the isotopicity as 't':j: Zi-tdj(l&’u")’

K3
wnere d.}(u,u') is thc(}—th component &{U,Ur) , i.e. 'E,‘_J‘ is
equal to the sum of elements in the }-th column of the ma-
trix R(L).

The graphs given in Fig.9 are isotopic. Correspondences ‘?,
induce the isotopicity permutations on the graph vertex set. The
total number of the isotopicity permutations IS(G,H) for graphs
G and H is given by the formula

1s(G n;
TG, =2 mu@m ([l sy !,
i=1 }1
where |S{G)| is the number of matrices in s(G) , ml((}) and
m(H) are the multiplicities of the L -th matrix S(G) in
(R}, 0e V(G)  and {RADY,UeV(H)  Sij is the nun-

ber of Llines in a a- -th block of similar lines in the t -th ma-

trix S(G) .M is the number of such blocks in the matrix.
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7. RELATIVE METRIC CHARACTERISTICS

In many problems of the structural information processing
the problem arises of the metric characterization not only for
the whole graph but also for its parts as subgraphs, partial
subgraphs, sets of vertices, etc. Let us use the metric charac-

teristics for describing the subgraph position in the graph.

tet V,eV(G), HeG , Dy (M= T daww),

reVv(H)

B, ()= > mox dw,w) . HeVa
rev(H) “€Vo

DEFINITION 8. The subgraph (normalized) distance HEG in the

graph G with respect to the set VosV(G) is called the function

D(H,V,)= D(G) g (H)
Similarly defined is the eccentricity H in G with respect
to V,eV(G) E(H,V°)=§1(—G')-EV;(H) . Such characteristics

which we shall call the relative ones enable us to describe the
subgraph position with respect to the distinguished vertex set of
a granh taking into account the characteristics of the whole
graph. The relative posiiton of the subgraph can be described
with the help of any other characteristics. Let Vo= V(G)
then the value D(H,V,) characterizes the position of the subgranh
in G . Let us give the simple values for €()/e(G) and
DY DG, VE V(G) . One should note that the values €(v),
e(G) and D) , D(G) , reV(GQ) are mutually dependent.
THEOREM 3. Let G be a graph of the order p and V€ VIG)

then _i__ < e(v) < a
207 e(g) P
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PRNOF. For any v€ V(G) an ineauality T(G)<e€(U)< d.(G)

PQ(G)S e(G) ¢ Pd-(G) is valid where ?2(G) , d(g) are
the radius and diameter of ( respectively. Let us divide the
. , ., UG | edG d (G
latter inequality by €(r) : P E(U) ¢ e“n) p TE-(TJ'_)) (*)

Substituting €(Ur) in the left part of * by d(G) in the right
part by T(G) and taking into account that d(G)(- 2U(G) we get
P e(G—) - 1 ¢ ew) 2

<« =

TSR P or ‘?'_P e(G—) P . The theorem is proved.
Let us give the examples of graphs where the value of ewry/
e(G) 1is close to the upper and lower bounds of the Theorem 3.

Let U'GV(KP‘I) where KF’ is a complete granh of the order p ,

XE X(Kp) . Let us choose I such as that deg v=p-2 , then
e(U') 2
eG) P2

Let H be a regular graph of the order P of the degree p-2
Such a graph can be obtained, for example, from KP of even order
by deleting P/2 edges. Let us form the graph L=H+3 , where
X is a new edge,I¢X(H). For the vertex Ue€V(L) with

de v=p-1 et E:(__V) = .—L—.
qvP TR ST Tpa

lLet Q he a set of all graphs of the order P with a dia-

neter (J, . Let us denote Dmm min min D(u—) D

max
max mox D{v) . GER rev@
GEQ VEV(G)

LEMMA 1.
Dmax = pd -4 d(d+1)
Donin = 4d(4-1) +p-c,
where C=4 , if d. is even and C=3/H4 if d is odd.
PROOF, In the granh of a diameter d therc is the shortest
path of a length d, between the diametric vertices.

Among the vertices of a simple nath the central vertex U
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has a minimal distance. lLet the remaining vertices P-d—i
which are not included into this path of a length d. be located
at a distance one from the vertex U . As follows from the con-

struction D(V):Dmi,n. 5 D(v)= iz(d"fi)d + (%*i)% ¥
f(p-d-1) = ( ~1)+p-1,

- ({ i, +
if d is even and Div)= ( ) "'i'(d'—iﬂ"*i)%—é +
d(d 3
- = = - + = i i
+(p-d-1) e (g-1)+p-1 ,1fd. is odd.

The end vertex U has the longest distance among the vertices
of the path. Let the remaining vertices P-‘d_-i which are out of
the path be located at a distance d. tvon the vertex I ., For such

. = =1 . =
a vertex D{(u) Dmna: and D (V) 2(d+1)d+ C{(P d 1) =
=Pd—%d(d+1) ;
For the comnletion of the proof 1let us show that there are graphs
G and H such as D(V):Dmn , D(u)=D. nqofFig.14)The lemma
is proved.

The question arises of how strong could differ the vertex
distances from D‘rru.‘n. and Dyax for the vertices of the same
graph. For vertices W , w in the graph G eiven in Fig. Jd,d.
is even, D)= Dpay  and D(W)< 2Domin that can he
demonstrated by direct calculation.

COROLLARY .
Doin o 4.1
Doz 12 1P
PROOL . Using the expression for Dymin and Damaa from the
Lemma 1 we get ip Y _ dQ/Q—dIZ+[D_—§ % dQ/"-{+ pr2 _
Drox pd-diy-diz ~ P9

FE ) (30 8)
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2+to

The expression -da‘+ achieves its minimal value at d=42P

whence
Dmin , 1 ({7p 41
Drmax 2P(‘_22 “m;) Zp

as desired to prove.

THEOREM 4. Let G be a graph of the order P and UeV(F)

then

LcM(Zﬁ_‘._L

P = D@ p

PROOF. The lower bound follows from the inequality

(W) ed(w,)) < :
2Di@)= “,:“V(i@‘u” By T el weplie

Let D(w)=min D(v) then for arbitrary vertex v€V(G)
vev(§)

D@ pDW) ~ P

To prove the upper bound we use collorary of Lemma 1. We have

D(vw) 2Dmax & = AL
ﬁas PDmi.ﬂ. . P\Q_p‘ 2&_\'?;
The theorem is proved.
Let us give an example of a graph where the ratio D{U’)/D(G)
is close to the upper bound of the Theorem 4. For the graph G
piven in Fig. 14 with a diameter d:Jﬁ the value D(w)/D(G)a%-"i—_
at P>2 that can be demonstrated bv direct calculation. P
For a more detailed description of the subgraph relative
position in a graph one can use more complicated characteristics
of graphs as, for example, the path characteristics. For hexago-
nal rings H, . Hy in the graph G in Fic. 15 at V= V(G)
the values of relative distances coincide D{H,) D)=D(H2,V,,) =

= 0.14653, but the relative path distance values are different
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Do (He V) - 0.318, De(Hy Vo) = 0.409, where
1
LD ().

De (H,Vo)= 5G) Dey, ¢

The relative characteristics can also be used for the de-
finition of the subgraph mutual positions in a graph. Let H, ,
H, <G ,Hy and H, be connected, V(Hi)r\V(Hz}=¢ .
We will denote the distance D(Hg V.) at V,=V(Hz) as
D(Hi’Hz) .The value D(Hi,Hz) characterizes the position
of subgraph Hi in respect to the subgraph HZ in graph G . 1t
is clear that D(Hy,H,)= D(H,,H.) . Let us consider the
graph G in Fig. 16 and the hexagonal rings Hy, Hy, H,€ G .
The relative distances D(Hy,Hp)= D(H, H,) = 0.386 but for the
path distances D (H; Hy) = 0.115 and D, (H; ,Hy) = 0.114.

$. BLIND SET OF A GRAPH

~
Each relative partition G(U'),U'G V(G) induces the the par-
tition of the graph vertex degrees. Let WE VL(U‘) , then the
layer V-L(lT) we shall call the proper layer for the vertex W

and the layers V-_i(lr) and V.

|_,,i(U') - the left and right adjacent

layers, respectively. Then dea = degﬂ“ de_gPu + deg,,lu
where degg u, dﬁgPu, d.eg.z w denote the number of vertices
adjacent to W in the left, proper and right adjacent lavers rcs-
pectively. Tt is clear that for any vertex W in the partition
a(lr) dege(u);to except for vertex U and for WE \/ew)(lf)
deg.z U=0 . In the partition E(U) in Fig. 17 degeuzz "
deg u=1, deg,lu=1 :

The layer Vew)(tr) we .shall call the partition shell G

and the set Q(G)= U Vew) ) - the shell of the granh
reV(G)
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G . The vertex W is called the blind vertex for the partition
a(lj) 1 d.eg,ttuo, WU and the vertex W docs not belong
to the partition shell. The vertex W will be the blind vertex
for the partition @(U’) in Fig. 17. The set of all the partition
blind vertices let us denote as T(@(v)) :
DEFINITION 9. The set T'(G) such as veT(G) & ve T'(Er(u))
is called the blind set of the graph G— 8 =

1f reT(G) , ¢ will be called the blind vertex of the
graph G . Let UeV(G)then the subgranh induced upon the vertex
set adjacent to U will be denoted hyGu.

THEOREM 5. Let de%lr-m in the graph G, then

CEeT(G) € GyoKypy and  ve S(G)
PROOF. The necessityv. Let UET(G) and Clu- is assumed to

be Gvfﬂ Km . Then in G-o- there are nonadjacent vertices W and
~

W . Let us construct the partition G(w) (Fig. 18a).In this par-

tition deg,ttrato , i.e. UET(G) . whence Gy=Kam . The

condition U€¢ S(G) follows from the definition of T(G)

The sufficiency. Let Gy ™K, and € S(G) . Let us show that
in all the relative partitions dE?}TV:O . Let there be the par-
tition with U‘EVL and deg,zuwf:o (the fragment of the parti-

tion is given in Fig. 18b). Then the layers Vi, and Vi, will
contain the vertices adjacent to U whence Gu.?k K.m. Thus, in all
the partitions dea.lu*:o . The theorem is proved.

The proved theorem enables us to localize the places of
probable "location" of vertices from T'(G) in the graph G . TFor
the graph given in Fig. 19 T(G)= {Ui,U"Z,U'J’m’} . The vertex
set e V() such as e(lr)=d.(G-) is called the periphery of

the graph G+ and will be denoted as P(G’) . Before shifting to



considering the set qﬂ(GQ for various graphs let us formulate
the sufficiently evident auxiliary statement.

LEMMA 2. 1f G is a tree then U€ S(G)SreP(G).

PROOF. The sufficiency is evident since for any W€ P(G)
there exists WE P(G) such as that d(u,u): d(G) . Conse-
gquently ¢ is in the partition shell a(u) , i.e. VeES(G).
The necessity. Let ve S(G) and assume that G has a single
central vertex W . Let u¢ P(G) that is equivalent to the
condition d(u,u)a((}) where T(G) is the radius of G . Let
us consider an arbitrary partition a with WE V,'_ . Since in
the tree dng_u:i and olegsu:o , then the vertex will be
from P(G) laying in the laver Vi*'l(G-) . Whence U does
not lay in the shell a as d(u,v)< (&) and because of ar-
bitrariness of the partition a we have that U¢ S(G) | we
get the contradiciton whence UE€ P(G) . For the bicentral trees
the proof procedure is similar. The lemma is proved.

COROLLARY 1. The blind set of a tree consists of all the
nondiametric pendant vertices.

PROOF. 1f v€ P(G) where G is a trece then UET(G) since
according to Lemma 2 P(G)=—S((i) . From the Theorem 5 follows
that the existence of the nonpendant vertex UE T(G) in the
praph (+ induces the existence of a cvcle in G . Consequently
in the tree G the nonpendant vertices cannot belong to T(G)

It is left to note that the pendant vertices being nondiametric
satisty the conditions of the Theorem 5. The corollary is proved.

COROLLARY 2. Tf in the tree G d(G)<H then T(G)=@.

PROOT . tor the tree G with a diameter d(G)€3 the set P(G)

coincides with the set of all pendant vertices whence according
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to the Corollary 1 T(G)=¢. The corollary is nroved.

Fig. 20 shows the tree G where d((})=l( and T(G)= {U’}

COROLLARY 3. If in the graph &G dGY<3 then T(G)=@.

PROOF, If (G)=d(@)=4 or 1G)=d(G)=2 then V(G)= P(G)
whence T(G)=@® since P(G)<S(G). Let T(G):i,d(q):?_ and
the vertices W ,U € V(G) be as that €(U)=41,€(W)=2 . Then
in the partition alu) deg,tu#o and WE P(G‘) . Consequently,
T(G)=¢ . The corollary is proved.

Fig. 21 shows the graph G where d.(CT)=3 and T(G)={vi.

COROLLARY 4. If G is a regular graph then T (G)= &,

PROOF. Let the grath vertices of the order P have a
degree M. . Let us assume that V€ T(G) . According to the
Theorem 5 Gy=Kp and in G KV(Gy)u VU > = Kypyy . Since,
according to the Corollary 3, T(K“H:L) then Ju d.eg u>m, whence
G is not a regular graph of a degree . This is a contradiction.
Consequently, for a regular graph G T (G)Y=¢@ . The corollary
is proved.

The following statements concern some extreme properties
of graphs with the blind sets.

THEOREM 6. Let in the graph G T (G)=@ then the minimal
order P of the graph G is equal to

~ 6, if G is a tree,
P_ { S5, in other cases

BM_F_ Let ( be not a tree. From the Corollary 3 follows
that for the granh G its minimal diameter d(GFS whence P>,5.
The graph in Fig. 21 has the order p=5 and T(&)={0} . 17
is a tree then according to the Corollary 2 the minimal diameter
of G d(G)=‘-| . As T(G) consists of the vendant nondia-
metric vertices (Corollary 1 of the Theorem §5), P36 . The

trce in Fig. 20 has the order p=6  and T(G)={U}. The theo-
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rem is proved.

COROLLARY, Let in the graph G 1T(G)|=M  then the mini-
mal order p of the graph G is equal to

) ms, if G is a tree,
P-{ N+ 4, in other cases,

PROOF. The minimal order of graphs for which |T(G)|=1 is
determined by the Theorem 6. To the graphs in Figs. 20 and 21
let us add mM-1 vertices in such a way that in a new graph
they could belong to T(G) . Such gravhs are given in Fig. 22.
The corollary is proved.

Let Y(G) be a set of cut points of the graphG

THEOREM 7. T(G) nY(G)=¢

PROOF. Let F€T(G) . As in all the relative partitions
deg.tu-:o then with deleting the vertex [ for anv vertex W
de%lu*o' Consequently, after the deletion of U the graph G
is remained to be connected, i.e. U€ Y(G) . The theorem is
proved.

The deletion of the graph blind vertices does not influence
the graph metric properties since the distance between the re-
mained vertices is conserved. If reV{(G) then G-u will
denote the graph obtained from G by deleting the vertex U
and its incident edges.

THEOREM 8. If UET(G) then

1) For any vertex UWEV(G-u) €g (W)= eG-U'(u‘)'
in particular T(G)="7(G-v) and dg)=d(G-v).

2) For any vertex U,weV(G-Ur) d-q(bl,W): dG,U(U»W)v

PROOF. From the Theorem 7 it follows that G-U is connected.
As in all the relative partitions of the graph G G{qulfzo

then in the corresponding partitions of the graph G-0" all the
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vertices will belong to the layers with the same pumber as those
in the nartitions of G . Consequently, the distances between
vertices in G-U will be the same as those in G . The theoren
is proved.

The graphs in which the deletion of any vertex causes the
change in a narameter based on the vertex distances we shall call
the vertex-critical graphs. Well known are such particular cases
of the vertex-critical graphs as the vertex-critical graphs upon
either diameter or radius [19,20}.

COROLLARY. 1f TU(G)*@ then G is not a vertex-critical
graph.

PROOT . Let U €T (G) then with the deletion of the vertex

according to the Theorem 7 G- will be connected and by the
Theorem 8 the distance between vertices in G-U does not change.
The corollary is proved.

Let us consider how the graph metric characteristics are
changed with the deletion of the graph blind vertex.

THEOREM 9. 1f VET(G) then D(G)= D(G-u)+ D(v) ,
e(G)=e(G-u)+ e(v).

PROOF. Using the Theorem 8 we get 2 D(G)= 2_ DG(u)+
UEV(Q)-ur

D=2 (7 dew,m+dgw,m)+Dw) =

UEV(G)-Ur xe V(G)-rr

=) dewu,m+ ) deu,w s D) = T deolu,x)

w,xeV{G)-Ir wevV(@)-u W, € V(G)-v

r 2D = 2 D(G-v)+ 2 D),

Analogous to it eq) = 2:; EG(U-) tewyy =
uevi{G)-uv

= T B (W ew) = eGrre(w) .
wev@)-u
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The theorem is proved.

Let us consider the properties of grapnhs obtained with the
deletion of the blind vertices.

DEFINITION 10. The nonblind subgranh of the graph G is called
the subgraph G—TEG of maximal order such as that T(Gr) =@

Let us note that with the deletion of U€&€ T(G) from
the graph G the condition W€ T(G-v) can be satisfied for the
vertex W& T'(G) as shown in Fig. 23 where UE€T(G) , W& T(G)
and WET(G-U) . The construction of the graph G-,._ consists
in the following: all vertices T(G)are deleted from the graphG;
from the graph obtained G4 all the vertices T(Gy) are deleted,
etc.

THEOREM 11, For any tree G there exists a single nonblind
subgraph GT consisting of diametric paths.

PROOF. According to the Corollary 1 of the Theorem 5 T(G)
consists of nondiametric pendant vertices. Since upon the dele-
tion of T(G) a dew graph will also be a tree, the pendant ver-
tices in G-,. will only be diametric ones. The theorem is proved.

Fig. 24 shows a tree G and its G

THEOREM 12. For an arbitrary graph G there exists the single
noenblind  subgraph G .

PROOF. Let G4 and G2 be the granhs obtained from G by
the deletion of vertices T(G)but the verticcs are deleted in
different successions. According to the Theorem 8, with the
deletion of the blind vertex all the distances between vertices
remained are conserved and since V(G1)=V(G2) , then G,l and GZ
have the same distance matrix, whence Gtﬁ‘-Gz . From the way of

construction of G—-,-. follows the uniqueness of G+ . The
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theorem is proved.

COROLLARY, For the graph G the subgraph G‘r has the order
of not less than d(G)+1P(GY-4.

PROOF. Since, according to the Theorem 8, the graph diameter
does not change after the deleting its blind vertices and the
diametric vertices cannot be the blind ones, the order of G"l‘
cannot be less than d(G)+|P(G)|—-1 . The corollary is proved.

For the graph G in Fig. 25 the subgraph G"r has an order
equal to A(G)*IP(GY~1 . It is evident that G=G., & T(G)=0.
From the previous considerations it follows that G--p conserves
the metric properties of G , i.c. for any vertex UWE VI(Gs)
€, (W= €g (W) and for any U,reV(G:) d¢ (um=dgu,v).

THEOREM 13. 1f G is a tree and d{(G)>3 then T(G)=®.

PROOF. Since d.(G)>3 then c' is connected and from the
property of a tree it follows that d((‘})=2 . According to the
Corollary 3 of the Theorem 5 for the graphs with such a diameter
the blind set is empty TH{G)=® . The theorem is proved.

The graph G in Fig. 21 is a selfcomplimentary and T(G)=
=T@G)= Y . For G in Fig. 26 TG =@ pur T(G)= iUz},

THEOREM 14. Tf {T(G)| =1 then T‘(G)=_gtii Kp: »
where  PyapPat...+ Py and 41¢Pi¢Tl , Ll'.=_1,2,->"t'

The proof follows from the Theorem 5.

Fig. 27 shows the graph G- {for which T(G)zKLUKQU K3U Kl-

COROLLARY. If G is the selfcomplimentary graph ,T(G)#Qj
and TUE=TLG) then IT(G)I=1,

PrROOT, Let |TUG)I=m . Since G’L’a‘ and T(G)=T(é)
then (TG > 2<T(GYY is satisfied. According to the Theerem 14

this is equivalent to the condition UKP,Q UKP which, as 1is
i t i -
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easy to verify, is satisfied only at M=4 . The corollary is
proved.

Let L(G) detone the line graph for the graph G

THEOREM 15. 1f G is a biconnected then T(L(G))=9.

PROOF. Let the edge (Uy Up)of the graph G corresvond to the
vertex GEV(L(G)) . The vertex U can belong to T(L(G)) only
under the condition that one of the following conditions is sa-
tisfied:

1. the edge (U, l,) is incident to the pendant vertex G ,
2. the edge (U,,Up) belongs to the triangle in G and
deg Fy= de%trfa.

Really, since in [ (G) for the vertex ¥ of the degree ™M
should be satisfied the condition Gusz then in G all the
edges incident to the edge (Vy,V,) should be incident to each
other. This is only possible if one of the mentioned above condi-
tions is satisfied. Note, that one of the conditions for 1) or 2)
to be satisfied is the condition Y(G)#® whence follows the
theorem statement. The theorem is proved.

For the graphs G and H in Fig. 28 edge (Uy,U,) corresponds

to the blind vertex U of the linc graphs.
G. FLAT GRAPHS

let us consider the graphs in any relative partition of which
there is not blind vertices.
~
DEFINITION 11. The graph G is called flat if U T(GUW)=9.
T Te V(G)
The main pronerty of the flat graphs is that for any vertex

(W in any relative partition ( W does not belong to the shell)

de%Tu;éo.
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THEOREM 16. The flat graph has not more than one cut point.

PROOF. Let the vertices W and O be the cut points of the
graph G then G consists of not less than three blocks B, «Ba
B, ., (Fig. 29a). Denote K,=max du,w), Ko=od(u,v) ,

WEV(B1)
K = mosc o (r,w) . Let us construct the relative martition

A WEV(B3)

G(wand G (V) whose diagrams are given in Fig. 29b. From the
condition of G flatness follows that K =¥,+ K3 and K3= Ka+Ky
whence K4=K5 and Kp=0 . Consequently, the vertex W coincides
with U and G has the only cut point. If G consists of many
blocks, the nroof procedure is similar. The theorem is proved.

As an example of the flat graph with the cut point is a star
Ki,pj‘ Examples of some flat graphs - complete graph KP , Comp-
lete ™. -part graph Kp,,PZv",P“‘, wheel VJP , graphs of a diame-
ter 2 without triangles, p -dimensional cube (lP , simple cvcle CP,
Moore's graphs,

The properties of flat graphs can be used for the study of
metric characteristics.

THEOREM 17. Tf for the flat graph G of the order p the shell
of every partition has one vertex then DI(G)= T[? e(g).

PROOF. Let us consider the partition aﬂﬂand let the vertex W
belong to the shell. Since G is flat then for any vertex weV(G)
da,wr+dw,u)=ew=ew) = F(ewrreww)) (%)
Summing (*) over all WEV(G) we have D(U)*D(UJ=%(E(LTH€(LO)-
Summing both parts of this equality over all various pairs [u,v}

we get D(G)= 'Ee(c'7 . The theorem is proved.

Some examples of graphs satisfying the conditions of the

Theorem 16 one can find out in Ref.[zﬂ.
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CONCLUSTION

In this work some directions of studies of metric properties
of graphs were considered. An analysis of metric properties of
graphs is based on the concept of relative partitions and corres-
ponding layer matrix of a graph. Metric characteristics of granhs
find their application in chemical research, for examnle, in the
problem of constructicn of topological indices of molecular graphs.
An application of the relative characteristics can be substanti-
ated by the fact that the properties of chemical compounds not
only demend on the presence of some fragment in the compound but
also on the fragment position in the molecule, on the mutual dis-
position of fragments, on the form of the molecule itself. The
relative metric characteristics enable one to distinguish the
embeddings of the same fragment in the molecular graph, to charac-
terize the interconnection of fragments in a molecule. The use
of the path characteristics permits to take into account more com-
vletely the structural features of graphs, The layer matrix and
path layer matrix of a graph enables one to use the common method
for calculating the metric and path characteristics and also some
relative characteristics. The well known topological indices as
the Wiener number and others [1Y can easily be obtained
with the corresponding matrices,

The problems of identification of graphs with the layer ma-
trix of various orders, complete laycr matrix (topgether with the
edge part) are investigated in the work. Of interest is the studv
of a possibility to identifv graphs with a path laver matrix. Some

exampies of nonisomorphic graphs of the order 18 which are not the
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trees with the same path laver matrices are presented in the
work. These examnles give a negative answer to the assumption
formulated in Ref. (18]. Still open is the auestion of whether
there are nonisomorphic graphs of the order P 12 p <17
having the same path layer matrix.*)

Considered in the work are the granh correspondences conserv-
ing the distances. The criterion of existence for isometric cor-
respondence is formulated in terms of the layer matrix. The exis-
tence criterion for isotopic correspondence is a more complicated
one - coincidence of the paired different line sets of path layer
matrices is only the necessary condition for the existence of
correspondence conserving the path distance.

The graph blind vertices were considered which deletion from
the graph does not change the mutual distances between the ver-
tices remained. The conditions are obtained for the existence of
the blind vertices in a graph, the blind vertex properties are
studied for various classes of graphs.

Note. that the work presented here could not cover the other
porblems of metric analysis. For example, for the Wiener number
theory it is of interest to study the regularities in changes of
a graph distance under some structural transformation, the concept
of structural isotopicity (the graph corresnondence conserving the

structure of paths outgoing from vertices] was not considered.

* ) As follows from the latest results this question is left onen

for graphs of the order P ,12<P£43 . The problem from Refs.{s,lﬂ]
on the existence of nonisomorphic regular graphs of a degrec T with
coinciding path laver matrices is solved for anv T>3 , the orders

of such graphs are defined.
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