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Abstract — The studies of the number of Kekulé structures for oblate
rectangles and their auxiliary classes are continued. The new develop-
ments have led to an extension (to #=6) of the set of recurrence rela-

tions discussed in PART III.

1. INTRODUCTION

The studies of Kekulé& structure counts (K) for oblate rectangle-shaped
benzenoids (or simply oblate rectangles) have met with relatively difficult,
and therefore challenging problems. These studies have led to the develop-
ments of several new methods. Two article series with practically the same
titles were started independently by Cyvin et al. and by Chen, not antici-
pating the present collaboration between the authors. The two series are now
combined into one as shown in the list of references.l

Tn the present paper we use the same notation as in PART III.l Espe-
cially the following abbreviation was introduced for the number of Kekulé

structures of oblate rectangles.
R (m) = K{RI(m,n)} ey
The K numbers for a set of auxiliary classes are given by

2 D = kB, m-2, 1)) (2
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(n)

for £ =0, *1, +2, ..., in. In particular, Rn

(m) = R (m). In the symbols
() n

R

n

(m) and Rn(_l) (m) the parameter I is defined as positive or zerc.
2. COMBINATORIAL K FORMULAS FOR B(n, 2m-2, -l); m=2 AND m=3

m=2

A formula for K{B(n, 2, -1)} = Rn(‘l)(z) was given by Chen (PART IB
and PART IIB)l as
Rn('”(z) < -;- (n+2) (141) (n=1+1) (3

It may be written in what we shall refer to as the first representation
(PART 14)"

Rn(_z)(Z) - (nzz)au) - (n+2)(£;1) @

The following form we shall refer to as the second representation.

Rn(-l)(Z) - (";z)m-lﬂ) = (mz)(”*?l) (5)

The member of this class for 7=0 and I=n is the L(2,n) parallelogram
in both cases. On inserting Z=0 and I=n in (4) and (5), respectively, one

finds immediately as expected
0) _p (1) _ [n+2
Rn (2) = Rn (2) —( 2 ) (6)

m=3

In order to derive K{B(n, 4, -1}} = Rn(_z) (3) we start with a special
case of Chen's formula (1) of PART IH,1 (m=4, 8=2), viz.

i n
8,P@ < Y @R, P @ ¢ Y i, P o o
=0 J=i+1

Insert Hn(%)(z) and !fn(_J)(Z) from the first (4) and second representa-

tion (5), respectively;
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1
8 TP @) = @eten Z (£+1)[(i+1)(”;’-) = (mz)(";l)]
=0
n
van Yy o] (n—j+1)(m2'2) . <n+z)(”‘g”)] ®
J=l+1

In the last summation we substitute j by j = n—Z and take the terms in re-

verse order. Consequently:

A
Rﬂ(_z)(B) = (n-1+1) E (i+1)[(«;+1)(";2) = (n+z)(’5;1)]

=0
n-1-1
+ (1+1) Z (£+1)[(£+1)(”;2) = (n+2)(L;1)] (9
=0

The result is consistent with the symmetry property K{B(n, 2, -2)} =
K{B(n, 2, i-n)}. The two summands in (9) have identical forms. They are

in principle easily executed. Here we make use of the identities

742

Gis" = 2( : ) - (@+1) (10)

an(*31) =3 (}37) -« (52 + @ an

Consequently the essential parts of the summations are readily obtained as:

r
3 2 r+3 r+2
Z('Lﬂ.) =2(3)—(2) (12)

=0
> wnlig) -5 () -+ () () -
=0

where we have to use r=lL and r = n-l-1, respectively, in the two summations
of (9). Eqn. (9) was consequently rendered into the form

[(n+3) 1 1+3) (n+3)f1+2) (LM\

2 + n+2 - =

ARV A E A T, S D e B

Rn(_l)(B) = (n-1+1)




- 132 -

- s 32[(?1;3) G B el 3(n+2)(n—z+3)( -

Inserting of 2=0 and l=n into (14) should both give
2@ » 2 ™) - (n+z>2(”*3) as)

which is the X formula for the four-tier pem:agon.2 The system is depicted

below in the two orientations pertaining to =0 and Z=n.

B(n, 4, 0) B(n, 4, -n)

In this example n=5 and RS(O)(3) = ﬁs(_s)(ﬁ) = 686. The inserting of l=n

into (14) is quite manageable. One obtains

o = f(7) ¢ me(7) - (TN) - seen(1E) 00

which indeed may be reduced to the form (15).
The whole equation (14) is somewhat simplified on expanding the bino-

mial coefficients, It was arrived at:

R,,H’(a) = z%‘mz)(zu)m-ul)[(n-m (n=l+2)(n + 31 + 11)

+ (L+2) (2+3) (4n - 31 + 8) = 6(n+2) (n+3)] [€%)]

Below we give an example of a member of this class. The figure pertains to
n=5, 1=3; in this case &,V (3) = RSH)(a) = 1519,



=~ 433 =

A possible application of eqn. (14) or (17) would be a direct expan-—
sion of Rn(t’o) according to PART IA:l

n
y (Y o (500
R = &M mr, M (18)
=0

Also the XK formula for the next member (m=5) could be obtained directly hy

h
a2 E (-Z) 2
En(S) -« [Rn (3)1] (19)
=0
The expansion of the summations (18) and (19), although elementary, would
be extremely tedious. We have not performed this task since the answers
are already known (PART IA, PART II.A),]' and we do not claim that the

method would lead to the goal easier.

2. RECURRENCE RELATIONS FOR Rn(t) (m)

Introduction

The auxiliary class B(n, 2m-2, -j'), where j' = [n/2], is of a spe-
cial interest for the recurrence relations which are treated in details
in PART ITI., Below we summarize the known results so far with regard to

these recurrence relations.
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n Recurrence relati.on

1 Ry (m+1) = 3R, (m)

2 aRz(m+1) = 8R,(m) - BR,(m-1)

3 PCRGme) = 15Ry(m) - 25R,(n1)

4 ©+%g, (n+1) = 27R,(m) - 108R, (n-1) + 108R, (m-2)

[

e - - -
5 Rs(mﬂ) QZRS(m) 245R5(m 1) + 343R5(m 2)

®I. Gutman, Match 17, 3 (1985)
PR. Chen, J. Xinjiang Univ. 3(2), 13 (1986)

£8.7; Cyvin, B.N. Cyvin and J.L. Bergan, Match 19, 189
(1986) - PART IA

d.X. Su, Match 20, 229 (1986)
®R, Chen, S.J. Cyvin and B.N. Cyvin, Match - PART III

; ) ;
We shall adhere to the form of eqn. (51) in PART III, which defines

the coefficients ¢. of the recurrence relations in question. The given form

applies to any classes Rn(t) (m). When applied to t = -j' one obtains
J"
o i) _E : P Y _n
R (m+1) = chn (m=4) ; AR (20)
J=0
Nontrivial values of n, viz, » =1, 2, 3, ...., are assumed.

Conjecture A4 in PART IIIl states

=i "
co = Rn (2) (21)
Furthermore, we know from PART II.I1 that, for arbitrary n,
-t
Ry = (22)
n
For arbitrary »n > 1:
-1
@ -0 (23)

In the remainder of this section we assume 7 > 1.
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Preliminary derivations

Eqn. (20) applied to m=1 gives

J'l J'l
-=d") . (=d") Z CF gy o Z G Yz
Rn (2) = cORn (1) + cj}?n (1= ¢ + chn (1-g)
FE e
(24)
For n=2 and n=3 (in both cases j' = 1), the summation in (24) redu-

ces to one term, which vanishes, Hence the result confirms Conjecture 4 in
these special cases. For »=4 and n=5 (in both cases j' = 2}, the summation
acquires two terms:

(=2) (-2)

2 P@ =cy+eop 1) (25)

0 17 0) + CZRh

(-2)

RS(-Z)(Z) = o + B D) czﬁs('z)(~1) (26)

By virtue of Conjecture A, together with (23) one obtains
2Py -0, A VI @n

In continuation of this analysis eqn. (24) applied to n=6 (j' = 3) yields

36('3)(2) =gy + clﬁs('3)(o) + czﬁs(_3)(—1) & c3R5("3)(—2) (28)

By the same reasoning as above one obtains that the sum of the two last
terms in (28) should vanish. It seems to be a reasonable assumption, and
will be verified in the following, that these two terms vanish individually,

viz.

B Py =2 e =0 (29)

In general, provided that Conjecture 4(21) is valid, one obtains by means
of (23) and (24):

(o s T

cJJ?n (1-§) =0 (30)
=2

In the following we state a supplementary conjecture, of which (29)

is a special case.
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Conjecture A':
-t P
Rn( IV =5 = 0; F =1, 2y eeee, §'-1 3D

This conjecture states that each term in the summation {(30) vanishes indi-
vidually. Eqn. (27) verifies (31) for j' = 2 provided that (21) holds.
Corollary of Conjecture A':
(_vj') ) e 1
B = 5 (32)
d
Proof: Apply eqn. (20) for m=0;

J
8@ <Y er ) 33
=0
or
. jr_l .
Lweyd, TN+ 30 ok 0 ()
J=0

where the summation vanishes by virtue of (23) and (31). Hence the rela-
tion (32) follows.

It is noted that we have been treating nominal values of X according
to the previous definition (PART III).]'

In the following we assume that both Conjecture A and Conjecture A"

are valid.
Successive derivation of the coefficients oy

Eqn. (20) was applied to m=0 and m=1 in (33) and (24), respectively.
The process can be continued. For m=2 one obtains

") = (-4} 3"y 3 Vg

R, (3) = coR, (2) + e, 1) + E chﬂ (2= (35)
J=2

where all nonvanishing terms have been extracted from the summation, while

the summation itself vanishes by virtue of (23) and (31). Hence

2

]

ey =&, V3) —er V@ -8 Vo - r, TV (36)

The next step (m=3) yields in the same way
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e, = Rn(_j')(a) - cORn(-j')(J) - can(_J‘)(Z)

2
o g _ =" =" (-i") 2
-8, 9w - TV @r V@« 18, TV @an
In general:
i) .
o; = Rn(_'j ) (ge2) - Z akﬁn(“" ) (Gk+1) (38)
k=0

Application to n=6

We will show an application of the above procedure to #n=6., Then ;'

= 3, and hence we seek four coefficients in the recurrence relatiomn, viz.
R6(m+l) = agﬁﬁ(m) + e R (m-1) + eyR, (m=2) + c3R6(m—3) (39)
By means of Conjecture ¢ (PART III) ,1 which states
e, = -¢ (n=6) (40)

the number of unknown coefficients is reduced to three (co, cl, cz). They
are obtained, in accordance with eqns. (21), (36) and (37), by means of

three K numbers:
B(6, 6, -3)
B(6, 4, -3)

B(6, 2, -3)

-3 _ (-3) =
B " lR) = B3 = 3456 RV @) = 18207

The numerical values are found in the tables of PART III.1

The net result is:

Rﬁ(mﬂ) = 64R6(m) = 640R6(m~1) + 2048R6(m-2) = 2048.‘?6(m—3) (41)
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The formula apparatus, which was used to derive the relation (41), is
based on conjectures. However, the result was verified by means of a suffi-
cient number of numerical tests. The tabulated values in PART III1 supply
sufficient material for this purpose. The correctness of the final result

(41) confirms in particular the nominal values of eqn. (29).

4. EXPLICIT EXPRESSIONS OF cj; J=0 AND j=1

We are now in the position to express cy and 2 explicitly as func-

tions of n.
Eqn. (3) applied to I = j' = [n/2] gives ¢
ture A (21). Explicitly:

0 in accord with Conjec-

(n+2)>; 7m0, 2, 4y eus

- 7 G -
ey = B, (2) = (42)

oo|—=  oof =

(n+1) (n+2) (n+3) ; Wi Ly B By s

Here n=0 covers the trivial case saying that Ro(m) =1 for all m,
Eqn. (17) applied to Z = j' gives:
. ﬁlﬂ- () (5m% + 20m + 24); n=0, 2,4,
Rn(-.:f )
gé—,; (n+1) (n+2)2(n+3) (Sn?‘ +20n+23); n=1, 3, 5, «.u.
(43)

On inserting (42) and (43) into (36) the following explicit formula for
¢y vas achieved.
- l il 4 [. .
g7 n(n+2) (n+4) n=2,4,6
8

. )

- 557 D@D D e (asy;  mo= 3,5, 7,

5. CONCLUSION

The expressions for CO and cl as given in eqns. (42) and (44), res-
pectively, display remarkable simple forms inasmuch as they are completely
factored into linear factors. In order to test whether this regularity

continues through higher values of j one should have the expressions of
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I?n(_l)(l'a), Hn(_z) (5), etc., if it is adherred to the same procedure as
above. The method used in Section 2 to derive Rn(-l)(:%) is not amenable
for extension to larger values of m. A more powerful method, based on the
John-Sachs theorem,3 was recently employed for derivations of different
kinds of K formulas. This topic, as far as the rectangles and related
benzenoid classes are concerned, is to be treated in the next part of this

article series.
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