ON HERMITIAN MATRICES ASSOCIATED WITH THE MATCHING POLYNOMIALS OF GRAPHS. PART I.

ON SOME GRAPHS WHOSE MATCHING POLYNOMIAL IS THE CHARACTERISTIC POLYNOMIAL OF A HERMITIAN MATRIX

Ante Graovac* and Oskar E. Polansky

Max-Planck-Institut für Strahlenchemie, D-4330 Mülheim a. d. Ruhr

(Received: September 1986)

ABSTRACT

For a particular tetracyclic graph and for ${\tt K}_4$ a weight matrix $\underline{{\tt W}}$ is given, the characteristic polynomial of which coincides with the matching polynomial of the respective graphs. The entries of $\underline{{\tt W}}$ are complex numbers.

In the chemical applications of graph theory a graph G is associated with a molecule in a prescribed manner [1]. Two polynomials play a significant role there: the characteristic polynomial $\phi(G;x)$ and the matching polynomial $\alpha(G;x)$ of G.

The characteristic polynomial is derived from the adjacency matrix. Any two vertices r and s in G are connected by an edge e(r,s) in G or they are not connected. The adjacency matrix $\underline{A} = \underline{A}(G)$ re-

^{*}Permanent address: "Ruder Bosković" Institute, YU-41001 Zagreb, Croatia, Yugoslavia.

flects this basic information on G. Its matrix elements are defined as follows:

$$A_{rs} = A_{sr} = 1$$
 if the edge e(r,s) exists in G, and $A_{rs} = 0$ otherwise (1)

 $\underline{\underline{A}}$ is an nxn symmetrical matrix where n stands for the number of vertices in G. Obviously, the eigenvalues of $\underline{\underline{A}}$ are real numbers. They are related to the molecular orbital (MO) energies of a molecule described by G within some simple tight-binding Hamiltonian. The eigenvalues of $\underline{\underline{A}}$ are the zeros of the characteristic polynomial which is defined by [1]

$$\Phi(G) = \Phi(G; x) = \det(xI - A)$$
 (2)

where I stands for the nxn unit matrix.

The matching polynomial of G is defined by [2]

$$\alpha(G) = \alpha(G;x) = \sum_{k=0}^{n/2} (-1)^k p(G,k) x^{n-2k}$$
 (3)

where p(G,k) denotes the number of ways in which \underline{k} independent edges can be selected in G. Thus all p(G,k) are natural numbers; in addition: p(G,0) = 1 and p(G,1) = m, where m denotes the number of edges in G. The matching polynomial has found applications in chemistry: the reference energy of a conjugated molecule can be expressed in terms of the zeros of α (G;x) [3]; it also plays some role in statistical thermodynamics, for instance in calculations of the heats of adsorption, phase-transitions, etc. [4].

 α (G) and φ (G) generally differ; they coincide only for graphs possessing no cycles. It would be attractive if α (G) could be expressed in a manner analogous to eq. (2):

$$\alpha(G;x) = \Phi(W;x) = \det(xI - W) \tag{4}$$

where \underline{W} stands for an nxn Hermitian matrix associated with some weighted digraph G^* of G and $\Phi(\underline{W};x)$ denotes the characteristic polynomial of that matrix. If this were the case, another proof of the reality of the zeros of $\alpha(G;x)$ follows immediately and, moreover, G^* may be interpreted in some way as the graph of the reference structure of a molecule. The existence of \underline{W} (i.e. the search for \underline{W} satisfying eq. (4)) was proved only for polycyclic graphs where no two cycles are condensed, in particular for monocyclic graphs [5], and in the case of condensed polycyclic graphs only for symmetrical bicyclic [6] and symmetrical peri-condensed tricyclic graphs [7]. As for an arbitrary (non-symmetrical) bicyclic graph no matrix \underline{W} satisfying eq. (4) can be given explicitely it is easy to show that for graphs possessing more than two condensed cycles \underline{W} cannot be generally given too [7].

However, for particular classes of polycyclic condensed graphs \mbox{W} can be found.

In the present note we consider the symmetrical tetracyclic peri-condensed graphs of class B. Its typical representative B_n (with (4n+1) vertices) is depicted below. We prove that \underline{W} exists for all graphs of class B. In addition we shall prove that \underline{W} exists also for the complete graphs K_3 and K_4 .

In the following text we use in general the notations of Ref. [7].

Let us replace the edges of G by pairs of oppositely directed arcs. If further a weight W_{rs} is associated with the arc starting at the vertex r and ending at the vertex s, a weighted digraph G^* of G is obtained. The weights W_{rs} define the weight matrix $\underline{W}(G^*)$ of G^* . \underline{W} is related to the adjacency matrix \underline{A} in such way that all zero elements of \underline{A} correspond to zero elements in \underline{W} .

Expanding the determinant (4) one immediately sees that all p(G,k)'s are expressed by some sums of particular k-linear products of $(W_{rs}W_{sr})$. Bearing in mind that p(G,k)'s are natural numbers the choice

$$W_{rs}W_{sr} = 1 \tag{5}$$

represents the simplest way to meet the requirements for all non-zero elements of W.

Note that the non-zero elements of the adjacency matrix also

comply with the similar condition: $A_{rs}A_{sr} = 1$, simply because they equal 1. In order to obtain the different polynomials defined by eqs. (2) and (4), \underline{A} and \underline{W} should be different; in general, W_{rs} must be different from 1. In view of eq. (5) we choose:

$$W_{rs} = W_{sr}^* = A_{rs} \exp(i\theta_{rs})$$
 (6)

Obviously: $\theta_{rs} = -\theta_{sr}$. The above choice reflects the fact that the structure of G and G* is the same as well as that \underline{W} is Hermitian. Moreover, because of $W_{rs}W_{gr} = (A_{rs})^2 = 1$, one has:

$$\alpha(G^*;x) = \alpha(G;x) \tag{7}$$

Let us consider a cycle Z in G of length |Z|. For reasons of simplicity we shall assume that vertices 1 and |Z| and also r and r+1, r = 1,2,..., Z -1 are connected in Z; in addition: |Z| > 2. A cycle Z in G gives rise to two oppositely directed cycles in G*, the first one having the weight exp $i(\theta_{12}+\theta_{23}+\ldots+\theta_{|Z|,1})$ and the second one having the weight exp $i(\theta_{1},|Z|+\theta_{|Z|,1})$ and the second one having the weight exp $i(\theta_{1},|Z|+\theta_{|Z|,1})$, i.e. the contribution of Z in G* equals 2t where:

$$t = \cos(\theta_{12} + \theta_{23} + \dots + \theta_{|z|-1,|z|} + \theta_{|z|,1})$$
 (8)

Obviously, the contribution of Z in G equals 2.

Bearing the above in mind and by applying the Sachs theorem [1] to the characteristic polynomial $\phi(G;x)$ of G it has been shown recently [8] that $\phi(G;x)$ is related to the matching polynomial of G in the following way:

$$\phi(G) = \alpha(G) - 2 \int_{a}^{\infty} \alpha(G - Z_a) + 4 \int_{a < b}^{\infty} \alpha(G - Z_a - Z_b) - 8 \int_{a < b < c}^{\infty} \alpha(G - Z_a - Z_b - Z_c) + \dots$$

where $\mathbf{Z}_{\mathbf{a}}$, $\mathbf{a}=1,2,\ldots$, are the cycles of the graph G. Note that the second, third, etc. summations on the right-hand side go over pairwise disjoint cycles.

Similarly, in view of (8) and by applying the Sachs theorem to $\Phi(W; x) = \det(xI - W)$ [6] one obtains [7]:

$$\phi(\underline{\mathbf{w}}) = \alpha(G) - 2 \sum_{\mathbf{a}} \mathbf{t}_{\mathbf{a}} \alpha(G - \mathbf{z}_{\mathbf{a}}) + 4 \sum_{\mathbf{a} < \mathbf{b}} \mathbf{t}_{\mathbf{a}} \mathbf{t}_{\mathbf{b}} \alpha(G - \mathbf{z}_{\mathbf{a}} - \mathbf{z}_{\mathbf{b}}) - 8 \sum_{\mathbf{a} \le \mathbf{b} \le \mathbf{C}} \mathbf{t}_{\mathbf{a}} \mathbf{t}_{\mathbf{b}} \mathbf{t}_{\mathbf{c}} \alpha(G - \mathbf{z}_{\mathbf{a}} - \mathbf{z}_{\mathbf{b}} - \mathbf{z}_{\mathbf{c}}) + \dots$$

where t_a corresponding to the cycle \mathbf{Z}_a is of the form (8).

Therefore, eq. (4) does agree with:

$$\sum_{a} t_{a} \alpha(G-Z_{a}) - 2 \sum_{a \le b} t_{a} t_{b} \alpha(G-Z_{a}-Z_{b}) + 4 \sum_{a \le b \le c} t_{a} t_{b} t_{c} \alpha(G-Z_{a}-Z_{b}-Z_{c}) - \dots = 0$$
(9)

The matrix \underline{W} can be given explicitely if a set of the parameters θ_{rs} can be chosen such that eq. (9) holds.

Obviously, the choice: $t_a = 0$ for all $a = 1, 2, \ldots$, satisfies eq. (9). We call it a trivial solution of eq. (9). However, in the case of condensed polycyclic graphs no set of the parameters θ_{rs} can be found which gives a trivial solution. Therefore, we continue to search for non-trivial solutions of eq. (9).

For the graphs of the class B there are no disjoint cycles possible and in this case eq. (9) reads as follows:

$$\sum_{j=1}^{13} t_j \alpha(G-Z_j; x) = 0$$
 (10)

Let us note that the symmetry of $\mathbf{B}_{\mathbf{n}}$ implies:

$$\alpha(G-Z_{1}) = \alpha(G-Z_{2}) = \alpha(G-Z_{3}) = \alpha(G-Z_{4}) = \alpha(P_{3n-1})$$

$$\alpha(G-Z_{5}) = \alpha(G-Z_{6}) = \alpha(G-Z_{7}) = \alpha(G-Z_{8}) = \alpha(P_{2n-1})$$

$$\alpha(G-Z_{9}) = \alpha(G-Z_{10}) = \alpha(G-Z_{11}) = \alpha(G-Z_{12}) = \alpha(P_{n-1})$$

$$\alpha(G-Z_{13}) = \alpha(P_{1}) = x$$

where P_{ℓ} stands for the path of the length ℓ . Because $\alpha(G-Z_1;x)$, $\alpha(G-Z_5;x)$, $\alpha(G-Z_9)$ and $\alpha(G-Z_{13})$ are polynomials in x of the mutually different orders, eq. (10) has to be partitioned into the following four conditions:

$$t_1 + t_2 + t_3 + t_4 = 0 (11)$$

$$t_5 + t_6 + t_7 + t_8 = 0$$
 (12)

$$t_9 + t_{10} + t_{11} + t_{12} = 0 ag{13}$$

$$t_{13} = 0$$
 (14)

Such a solution we call a collective solution of eq. (9).

Let us introduce the notation:

$$\tau = \Theta_{12} + \Theta_{23} + \dots + \Theta_{n,n+1} =$$

$$= \Theta_{n+1,n+2} + \dots + \Theta_{2n,2n+1} =$$

$$= \Theta_{2n+1,2n+2} + \dots + \Theta_{3n,3n+1} =$$

$$= \Theta_{3n+1,3n+2} + \dots + \Theta_{4n,1}$$

$$\alpha = \Theta_{n+1,4n+1} = \Theta_{3n+1,4n+1}$$

$$\beta = \Theta_{4n+1,1}$$

$$\delta = \Theta_{4n+1,2n+1}$$

Note, $\exp(i\tau)$ is the weight associated with the sequence of arcs leading from 1 to n+1, leading from n+1 to 2n+1, etc.

Whether eqs. (11) - (14) have solution in τ , α , β and δ doesn't depend on n and it is sufficient to consider B_1 instead of the whole class β . A diagrammatic representation, (B_1^*) , of the directed weighted graph B_1^* is depicted below. For reasons of simplicity for each edge in B_1 only one directed arc in B_1^* is presented; further, instead of the weights, $\exp(i\theta_{rs})$, only the parameters θ_{rs} are drawn besides the related arcs.

Eqs. (11) - (14) now read as follows:

$$\cos(\tau + (\alpha + \beta)) + \cos(\tau - (\alpha + \beta)) + \cos(\tau + (\alpha + \delta)) + \cos(\tau - (\alpha + \delta)) = 0$$
 (15)

$$2\cos(2\tau) + \cos(2\tau + (\beta - \delta)) + \cos(2\tau - (\beta - \delta)) = 0$$
 (16)

$$\cos(3\tau + (\alpha + \beta)) + \cos(3\tau - (\alpha + \beta)) + \cos(3\tau + (\alpha + \delta)) + \cos(3\tau - (\alpha + \delta)) = 0$$
 (17)

$$\cos(4\tau) = 0 \tag{18}$$

The last equation yields:

$$\tau = (2j + 1)\pi/8, \quad j = 0,1,2,...$$
 (19)

By applying the well known identity:

$$\cos x + \cos y = 2 \cos(x+y)/2 \cos(x-y)/2$$
 (20)

to the remaining equations one obtains:

$$\cos(\alpha + \beta) + \cos(\alpha + \delta) = 0$$
 (21)

$$1 + \cos(\beta - \delta) = 0 \tag{22}$$

where both eqs. (15) and (17) give rise to the same eq. (21). Eq. (22) yields:

$$B = \delta + (2k+1)\pi, \quad k = 0,1,2,...$$
 (23)

and as a result eq. (21) is satisfied for any α and δ . Therefore, one has:

$$\alpha$$
 = arbitrary, δ = arbitrary (24)

The matrix \underline{W} exists with the values of α , β , δ and τ being given by eqs. (19), (23) and (24).

A particular solution: α = δ = τ = $\pi/8$, β = τ + π is shown below.

Note that the matrix \underline{W} also exists with the same solution as given above if instead of B_n one considers graph obtained from B_n by replacing four edges incident to the vertex 4n+1 by the chains of arbitrary but equal lengths.

Let us now consider the complete graphs ${\rm K_3}$ and ${\rm K_4}$. The ma+rix $\underline{{\rm W}}$ exists for ${\rm K_3}$ since it is a monocyclic graph [3]. A directed weighted graph of ${\rm K_4}$ for a particular choice of ${\rm \Theta_{rs}}$ -parameters is shown below.

Simple algebra leads to the conclusion that the matrix $\underline{\mathtt{W}}(\mathtt{K}_4^*)$ exists for:

$$\alpha = (2j+1)\pi/8$$
, $\beta = (2k+1)\pi/2$, $j,k = 0,1,2,...$

Another choice of the parameters θ_{rs} for K_4 is obtained if it is represented as a planar tricyclic peri-condensed graph. The corresponding directed weighted graph is depicted below.

The matrix \underline{W} exists for: $\tau = (2j+1)\pi/4$, j = 0,1,2,... or for: $\tau = (6k+1)\pi/6$, k = 0,1,2,... (It is interesting to compare the above graph with the graph B_1^* : for both of them all parameters θ_{rs} equal τ except one which equals $\tau + \pi$; however, τ has not the same value for both graphs.

Let G be a homeomorph of K_4 obtained by the subdivision of the edges of K_4 by appropriate numbers a,b,c,... of vertices as depicted schematically below:

The method of collective solution applied above requires the following equalities

$$\alpha(G-Z_1) = \alpha(G-Z_2) = \alpha(G-Z_3) = \alpha(G-Z_4)$$
, (25)

$$\alpha (G-Z_5) = \alpha (G-Z_6) = \alpha (G-Z_7)$$
 (26)

As can be shown easily these equalities hold only in case of

$$a = b = c = d = e = f$$
.

This means: the results obtained above for K_4 can be applied only to those tricyclic graphs with 6a+4 vertices which exhibit the same high symmetry as K_4 [9]. The conservation of the high symmetry seems to be a characteristic of the method of the collective solution.

Thus, one would conjecture that the symmetry requirements for the homeomorphs of K_4 might be reduced when the respective collections of the 3- and/or 4-membered cycles are partitioned into smaller ones. Such an attempt has already been reported in [7] where the requirement (25) is reduced to

$$\alpha(G-Z_1) = \alpha(G-Z_2) = \alpha(G-Z_3)$$
 (27)

allowing one to apply the results to homeomorphs of ${\rm K}_4$ with

$$a = b = c$$
 and $d = e = f$.

Below we give some other weights for K_4 which require only the equalities (26). Unfortunately, this leads again to

$$a = b = c$$
 and $d = e = f$.

Thus, a further reduction of the symmetry of the homeomorphs of K_4 demands a partitioning of the collection of the 4-membered cycles, but could not be achieved.

In the subsequent paper [10] we present a trivial solution for ${\rm K}_4$ obtained by means of quaternionic weights; the trivial solution for ${\rm K}_4$ may be applied to any homeomorph of ${\rm K}_4$.

<u>Acknowledgement</u>. This work was supported in part by the National Science Foundation (Grant No. JFP-684). One of us (A.G.) thanks the Max-Planck-Gesellschaft for a grant.

REFERENCES

- [1] For details on the use of graph theory in chemistry see:
 A. Graovac, I. Gutman, and N. Trinajstić, Topological Approach
 to the Chemistry of Conjugated Molecules, Springer-Verlag,
 Berlin 1977; I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin 1986.
- [2] See, e.g.: C.D. Godsil and I. Gutman, J. Graph Theory <u>5</u> (1981) 137.
- [3] I. Gutman, M. Milun, and N. Trinajstić, MATCH <u>1</u> (1975) 171; J. Amer. Chem. Soc. <u>99</u> (1977) 1692; J. Aihara, J. Amer. Chem. Soc. <u>98</u> (1976) 2750.
- [4] H.N.V. Temperley, Graph Theory and Applications, Ellis Horwood, Chichester 1981, and references cited there.
- [5] J. Aihara, Bull. Chem. Soc. Japan 52 (1979) 1529; L.J. Schaad, B.A. Hess, J.B. Nation, N. Trinajstić, and I. Gutman, Croat. Chem. Acta 52 (1979) 233; A. Graovac, D. Kasum, and N. Trinajstić, Croat. Chem. Acta 54 (1981) 91.
- [6] A. Graovac, Chem. Phys. Lett. 82 (1981) 248.
- [7] I. Gutman, A. Graovac, and B. Mohar, MATCH $\underline{13}$ (1982) 129. There are some minor errors: Term $\theta_{p,p+1}$ on p. 139 has to be deleted from ß and added to α . $k \le K$ in eq. (16b) should read k < K. Moreover, $p(G_1,k) \neq p(G_2,k)$ is necessary for a non-trivial solution.
- [8] I. Gutman and O.E. Polansky, Theoret. Chim. Acta 60 (1981) 203.
- [9] Note that the homeomorph of K_4 obtained for a = 1 represents the skeleton of adamantane.
- [10] O.E. Polansky and A. Graovac, MATCH, this issue, subsequent paper.