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ABSTRACT

For a particular tetracyclic graph and for K4 a weight matrix
W is given, the characteristic polyncmial of which coincides with
the matching polynomial of the respective graphs. The entries of W

are complex numbers.

In the chemical applications of graph theory a graph G is
associated with a molecule in a prescribed manner [1]. Two polyno=-
mials play a significant role there: the characteristic polynomial
$(G;x) and the matching polynomial a(G;x) of G.

The characteristic polynomial is derived from the adjacency
matrix. Any two vertices r and s in G are connected by an edge e(r,s)

in G or they are not connected. The adjacency matrix A = A(G) re-
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flects this basic information on G. Its matrix elements are de-

fined as follows:

Ars = Asr =1 4if the edge e(r,s) exists in G, and

(1

Ars =0 otherwise

A is an nxn symmetrical matrix where n stands for the number of
vertices in G. Obviously, the eigenvalues of A are real numbers.
They are related to the molecular orbital (MO) energies of a mole-
cule described by G within some simple tight-binding Hamiltonian.
The eigenvalues of A are the zeros of the characteristic polyno-

mial which is defined by [1]
2(G) = 2(G;x) = det (xI - A) (2)
where I stands for the nxn unit matrix.

The matching polynomial of G is defined by [2]

n/2 k
(@) = a(G;x) = § (=107 p(G,k) x
k=0

n=-2k (3)

where p(G,k}) dencotes the number of ways in which k independent
edges can be selected in G. Thus all p(G,k) are natural numbers;

in addition: p(G,0) = 1 and p(G,1) = m, where m denotes the number
of edges in G. The matching polynomial has found applications in
chemistry: the reference energy of a conjugated molecule can be ex-
pressed in terms of the zeros of «(G;x) [3]; it also plays some
role in statistical thermodynamics, for instance in calculations

of the heats of adsorption, phase-transitions, etc. [4].

o {(G) and ¢(G) generally differ; they coincide only for graphs
possessing no cycles. It would be attractive if o(G) could be ex-

pressed in a manner analogous to eq. (2):



a(G;x) = P(W;x) ~ det (xI - W) (4)

where W stands for an nxn Hermitian matrix associated with some
weighted digraph G* of G and ¢(W;x) denotes the characteristic poly-
nomial of that matrix. If this were the case, another proof

of the reality of the zeros of u(G;x) follows immediately and,
moreover, G¥ may be interpreted in some way as the graph of the
reference structure of a molecule. The existence of W (i.e. the
search for W satisfying eq. (4)) was proved only for polycyclic
graphs where no two cycles are condensed, in particular for mono-
cyclic graphs [5], and in the case of condensed polycyclic graphs
only for symmetrical bicyclic [6] and symmetrical peri-condensed
tricyclic graphs [7]. As for an arbitrary (non-symmetrical) bi-
cyclic graph no matrix W satisfying eq. (4) can be given expli-
citely it is easy to show that for graphs possessing more than

two condensed cycles W cannot be generally given too [7].

However, for particular classes of polycyclic condensed

graphs W can be found.

In the present note we consider the symmetrical tetracyclic
peri-condensed graphs of class B, Its typical representative Bn
(with (4n+1) vertices) is depicted below. We prove that W exists
for all graphs of class B. In addition we shall prove that W

exists also for the complete graphs K3 and Kd'



In the following text we use in general the notations of

Ref. [T].

Zg = 3, U2,

Zg =2, U 1,

Z, =2, U 3,

Zg = 2, U 2,

Zg =2, U2,V 1z,
Zip = %, U 25U 2,
Ty =23 U2, 03,
Z,,=3, U5 U3,

{Bn) 2y3=2, U2,V 32,012,
\{t4an + 1}

Let us replace the edges of G by pairs of oppositely direc-

ted arcs. If further a weight Wr is associated with the arc start-

s
ing at the vertex r and ending at the vertex s, a weighted digraph
G* of G is obtained. The weights Wrs define the weight matrix W(G¥)
of' 6¥*. W is related to the adjacency matrix A in such way that

all zero elements of A correspond to zero elements in W.

Expanding the determinant (4) one immediately sees that all
p(G,k) 's are expressed by some sums of particular k-linear products
of (wrswsr)' Bearing in mind that p(G,k)'s are natural numbers the
choice

W W (5)
represents the simplest way to meet the requirements for all non-

zero elements of W.

Note that the non-zero elements of the adjacency matrix also
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comply with the similar condition: ArsAsr = 1, simply because
they equal 1. In order to obtain the different polynomials defined
by egs. (2) and (4), A and W should be different; in general,

wrS must be different from 1. In view of eq. (5) we choose:

= * - :
Wps = War = ApgexP(10,,) L5

Obviously: Ors = -esr‘ The above choice reflects the fact that the
structure of G and G* is the same as well as that W is Hermitian.

_ 2 =
Moreover, because of Wrswsr = (ArS) = 1, one has:

al(G®*;x) = a(G;x) (7)

Let us consider a cycle Z in G of length |Z|. For reasons of
simplicity we shall assume that vertices 1 and |Z| and also r and
r+l, * =1,2,..., 2 -1 are connected in Z; in addition: |z| > 2.

A cycle Z in G gives rise to two oppositely directed cycles in G¥,
the first one having the weight exp i(e1z+®23+ o W G.Z|’1) and
the second one having the weight exp 1(61,|Z\ + O\Z|r|zl‘1 ¥ san
+0, 1) = exp(=i(By, + Oyy e 9|4],1))+ i-e. the contribution

of % in G* eqguals 2t where:
t=COS{G12+923+.--+O|Z|_1"Z| +OEZ‘I1) (8)

Obvicusly, the contribution of Z in G equals 2.

Bearing the above in mind and by applying the Sachs theorem
[1] to the characteristic polynomial ¢(G;x) of G it has been shown
recently [8] that #(G;x) is related to the matching polynomial of

G in the following way:

$(6) =a(6) - 2 | a(G-2,} +4 ] a(G-2,-Z

)
a a<b b
-8 § alG-Z_-2,-Z ) + ...

a<b<c 2ihrSe



where Za, a=1,2,..., are the cycles of the graph G. Note that the
second, third, etc. summations on the right-hand side go over pair-

wise disjoint cycles.

Similarly, in view of (8) and by applying the Sachs theorem

to ¢(W;x) = det (xI-W) [6] one obtains [7]:

oW = al(G) - 2 ) t_ alG-2)) +4 ] t_t_ alG-2 -2

5 @ a afp. @b a b

-8 J ottt «lG-Z_-Z,-2) + ...
a<bce 2 b~ e a b e

where ta corresponding to the cycle Za is of the form (8).

Therefore, eq. (4) does agree with:

ot a(G-2.) - 2 t_t, a(G-2Z_-%Z,) +
a @ a agb ab a b)
(9)
+4 7 tatpte ®(G-2,-2,-2 ) - ... =0

a<b<c

The matrix W can be given explicitely if a set of the parameters

0,4 can be chosen such that eg. (9) holds.

Obviously, the choice: t_ = o for all a=1,2,..., satisfies
eg. (9). We call it a trivial solution of eq. (9). However, in
the case of condensed polycyclic graphs no set of the parameters
0 can be found which gives a tradiviad solution. Therefore, we

rs
continue to search for non-trivial solutions of eq. (9).

For the graphs of the class B there are no disjoint cycles
possible and in this case eq. (9) reads as follows:
13
t. a(G-2.;x}) =0 (10)
j£1 J a)

Let us note that the symmetry of Bn implies:



u(G—Z1) = m(G—ZZ) u(G-Z3) 2(G-2,) = a(P

3n-1)

a(G-2g) = a(G-2;) = w(G-Z,) = a(G-Zg) = a(P,, 4}
0(G-24) = al(G-2,,) = u(G-2,,) = alG-2Z,,} = a(P _,)
0 (G-Z44) = a(P)) = x

where P, stands for the path of the length &. Because m(G—Z1;x),
a(G-z5;x), u(G—Zg) and m(G—z13) are polynomials in x of the mutual-
ly different orders, eq. (10) has to be partitioned into the fol-

lowing four conditions:

t1 + t2 + t3 oty = [¢] (11)
tg + tp + by + £ =0 (12)
tg + t10 + t11 + t12 =0 (13)
t]3 =0 (14)

Such a solution we call a coffective sclution of eq. (9).

Let us introduce the notation:

T = 612 + 023 T 0n,n+1 =
= On+1,n+2 ¥ opers 5E O2n,2n+1
= Bonad, omeg ¥ oo ¥ O3p gpuq 7
= Busin, Bnikg T den F %mn,1

® = 041, an+1 = %3041, 4041

B = 04411

§

= 94041, 2n+1
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Note, exp(it) is the weight associated with the sequence of arcs
leading from 1 to n+1, leading from n+1 to 2n+1, etc.

Whether egs. (11) - (14) have solution in t, @, B and § doesn't
depend on n and it is sufficient to consider B, instead of the
whole class B. A diagrammatic representation, (B?), of the directel

weighted graph B? is depicted below. For reasons of simplicity for

each edge in E1 only one directed arc in B? is presented; further,

instead of the weights, exp(iOrS). only the parameters Ors are

drawn besides the related arcs.

*
Egs. (11) - (14) now read as follows:
cos (1+ (o+B) ) +cos (1= (a+B) ) +cos (t+(a+8) ) +cos (1-(a+8)) = O (15)
2cos(2t)+cos(27+(B-6))+cos(21-(8=§)) = O (16)

cos {31+ {0+R8) }+cos (3T~ (o+8) J+cos(3T+{u+d) )+cos(31~{a+d)) = O (17)
cos (41) = 0O (18)
The last equation yields:
T = (2§ + 1)n/8, j=0,1,2,... (19)
By applying the well known identity:

cosx + cosy = 2 cos(x+y)/2 cos(x-y)/2 (20)



2 fF e

to the remaining equations one cbtains:

cos{a+B) + cos(a+s) =0 (21
1 + cos{Bf=8) =0 (22)
where both egs. (15} and (17) give rise to the same eq. (21).
Eq. (22) yields:
BeS+ (2xHl)o; k= 0510250, (23)

and as a result eq. (21) is satisfied for any o and &. There-

fore, one has:
n = arbitrary, § = arbitrary (24)

The matrix W exists with the values of a«, 8, ¢ and T being given by

eqs. (19), (23) and (24).

A particular solution: o = 8 =71 = 7/8, B8 =T + 7 is shown

below.

/8

o
]

Note that the matrix W also exists with the same solution as
given above if instead of Bn one considers graph obtained from Bn
by replacing four edges incident to. the vertex 4n+1 by the chains

of arbitrary but equal lengths.

Let us now consider the complete graphs K3 and K4. The ma*trix W
exists for K3 since it is a monocyclic graph [3]. A directed
weighted graph of K, for a particular choice of @rs—parameters is

shown below.



(K})

Simple algebra leads to the conclusion that the matrix E(K:)

exists for:

o = (25+1)n/8, B8 = (2k+1)n/2, j,k = 0,1,2,..,

Another choice of the parameters ers for K4 is obtained if
it is represented as a planar tricyclic peri-condensed graph. The

corresponding directed weighted graph is depicted below.

The matrix W exists for: 1 = (2j+1)n/4, j = 0,1,2,... or for:
T = (6k11)ﬂ/6, k=0,1,2,... . (It is interesting to compare the
above graph with the graph 8%: for both of them all parameters
Ors equal Tt except one which equals t + 7; however, 1 has not the
same value for both graphs.

Let G be a homeomorph of K, obtained by the subdivision of the
edges of K4 by appropriate numbers a,b,c,... of vertices as de-

picted schematically below:



By = T ZpanimpBismse)
P R o)
By = WMipmasabpnvan@pvesil)
B = Wavessdupen Wpsned)
Bg = (lyesse2iesviBaeerlyoensl)
Zg = oavas3ieearbiecnsZinnns)
2y = (hedeeni2, 03,00 )

The method of collective solution applied above requires the fol-

lowing equalities

m(G-Z1) = Q(G-Zz) = a(G—Z3) = Q(G-Z4) ‘ {25)

a(G—ZS) = m(G—Zs) = a(G-Z7) = (26)

As can be shown easily these equalities hold only in case of

This means: the results obtained above for K, can be applied

only to those tricyclic graphs with 6a+4 vertices which exhibit

the same high symmetry as K, [9]. The conservation of the high sym-
metry seems to be a characteristic of the method of the collective

solution.

Thus, one would conjecture that the symmetry requirements for
the homeomorphs of K4 might be reduced when the respective collec-
tions of the 3- and/or 4-membered cycles are partitioned into

smaller ones. Such an attempt has already been reported in [7] where

the requirement (25} is reduced to
3(5‘21) = a(G-2,) = alG-2,) (27)
allowing one to apply the results to homeomorphs of K4 with

a=b=c and d=e=f§



Below we give some other weights for K4 which require only
the equalities (26). Unfortunately, this leads again to
a=b=c and d=e=f .
Thus, a further reduction of the symmetry of the homeomorphs of

K4 demands a partitioning of the collection of the 4-membered

cycles, but could not be achieved.

a = arbitrary

B=a+ =

In the subsequent paper [l0] we present a trivial solution

for K, obtained by means of guaternicnic weights; the trivial

4
solution for K4 may be applied to any homeomorph of K,.
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