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Abstract

Two linear recurrences are determined, from which circuit polynomials
of linear benzene chains can be explicitly obtained. Corresponding
results for characteristic polynomials, matching polynomials and

y-polynomials can be easily deduced.
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1. INTRODUCTION
We will consider only graphs which are finite and have no loops.

Let G be such a graph. A cycle decomposition (circuit cover, cycle

cover) of G, is a spanning subgraph of G, in which every compomnent is
a circuit. We define a circuit with one and two nodes to be a node and
and edge respectively. A circuit with more than two nodes will be

called a proper circuit. A matching is a circuit cover which has no

proper circuits. With every circuit (cycle) a in G, let us associate
an indeterminate or weight L and with every cycle cover C, the weight

w(C) = Hwa.

where the product is taken over all the cycles in C. Then the circuit
(cycle) polynomial of G is
c(G;w) = Iw(C),

where the summation is taken over all the cycle covers in G, and w is
a vector of weights, sometimes referred to as a weight vector. The
circuit polynomial was first introduced in Farrell [2] as a member of
a class of polynomials, called F-polynomials. The basic results about
circuit polynomials are however given in Farrell [1].

In this paper, we will assign the weight vy to the cycle with n nodes.
Therefore w will be of the form (wl,w W ,....wp). where p is the number

23

of nodes in G.
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Therefore if Awirszwkt is a term in C(G;w), then ri + is + kt = p and
G has A covers consisting of r i-gons, s j-gons and t k-gons. C(G;w) is
essentially a generating function for the different types of circuit

covers of G.

We define a linear benzene chain Bl_1 to be the graph formed by edge

concatenating n(a finite number) hexagons, so that the adjacent hexagons
have exactly one edge in common. This graph can also be called a hexa-
gonal animal (see Harary and Harborth [11]). Among regular chemical
structures nature seems to prefer haxagonal structures. Thus benzene
chains are of particular interest to chemists. The corresponding chemical
compounds are called polyacenes. (n = 1; benzene, n = 2; naphthalene

n = 3; anthracene, etc.)

It was shown in [2] that the characteristic polynomial and the matching
polynomial are special circuit polynomials. Thus,. statements about C(G;w)
will also hold for these two polynomials. The characteristic polynomial
and the matching polynomial are of some importance in the investigation of
chemical compounds (see Godsil and Gutman [6,7] and Gutwan [8]), Recently,
another polynomial, the u-polyncmial, was introduced by Gutman and Polansky
[9]. This polynomial also seems to be quite useful in chemical investigations
on n-electron energy (see [9] and Polansky and Graovac [13]). 1t was shown
by Farrell [3] that this polynomial is also a special circuit polynomial.
Thus, results about circuit polynomials of benzene chains could be of interest
to theoretical chemists.

We will derive two linear recurrences, from which the circuit polynomial
of Bn can be explicitly obtained, for any value of n. We will also give
some tables of values of C(Bn;g). For brevity, we will use C(Bn) (and sometimes

Bn), for C(BH;E)' when it would lead to no confusion, and especially in
equations. We refer the reader to Harary [10] for the basic definitions in

Graph Theory.
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2. PRELIMINARIES
We define a chain to be a tree with nodes of valencies 1 and 2 only.
The chain with n nodes will be denoted by Pn. Most of our results will
be written in terms of the circuit polynomial of Fn. Clearly, every
circuit cover of Pn will be a matching. Therefore the circuit polynomial
of Pn coincides with its matching polynomial. Hence from Theorem 9 of
Farrell [4]), we have the following lemma.
Lemma 1 (p/2]

(1) c(PP;E)= L

CK v Pl R
k=0 k 1

2
(ii) C(PP)=WIC(PP—1) + W, C(Pp_z), with C(PD) = 1.

A table of values for C(Pp) is also given in [4] (Table 1). This will
be useful in the material which follows. We attach Pn to a graph G, by
identifying an end node of Pn with a node of G.

The following result is called the Fundamental Theorem for circuit poly-
nomials. It can be easily proved (see [1]).

Theorem 1
Let G be a graph containing an edge Xy, joining nodes x and y, Then
C(Giw) = C(C3w) + wy C(C~"3mw) + C(C w),
where G° is the graph obtained from G by deleting xy, G°” is obtained from
G by removing nodes x and y, and G* is the restricted graph obtained from
G, by requiring that any cover of G* must include edge xy as part of a proper
circuit.
Theorem 1 implies an algorithm for finding circuit polynomials of graphs.

This algorithm will be referred to as the reduction process.
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The following lemma was established in [9] and [13]; otherwise it can
be easily deduced from Lemmas 2,3 and 4.
Lemma 5
(1) 2(G;x)) = u(G;1,x) and
(ii) «(G;x) = u(G;0,x), where

a(G;x) = m(CG; x,-1) is the acyclic polynomial of G.

3. CIRCUIT POLYNOMIALS OF BENZENE CHAINS
We will call the n hexagons which are "stuck on" to form Bn' the cells
of Bn. We define B to be an edge. The first and last cells of Bn will be
0

called terminal cells. Bn is illustrated below in Figure 1.

X

Figure 1



























